COMPACT FORMULAE FOR NUMBER OF CONDUCTION CHANNELS IN VARIOUS TYPES OF GRAPHENE NANORIBBONS AT VARIOUS TEMPERATURES

被引:30
作者
Nasiri, Saeed Haji [2 ]
Faez, Rahim [3 ]
Moravvej-Farshi, Mohammad Kazem [1 ]
机构
[1] Tarbiat Modares Univ, ADSL, Fac Elect & Comp Engn, Tehran 1411713116, Iran
[2] Islamic Azad Univ, Dept Elect Engn, Sci & Res Branch, Tehran 1477893855, Iran
[3] Sharif Univ Technol, Dept Elect Engn, Tehran 1458889694, Iran
来源
MODERN PHYSICS LETTERS B | 2012年 / 26卷 / 01期
关键词
Graphene; nanoribbon; conducting channel;
D O I
10.1142/S0217984911500047
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present two compact analytic formulae for calculating the channel number in graphene nanoribbons (GNRs), in terms of GNRs' width and Fermi energy. Numerical data obtained from these analytic formulae fit those obtained numerically from the exact formula, with accuracies within 1%. Using appropriate fit parameters, the compact formulae are valid for zigzag, armchair-metallic, and armchair-semiconducting GNRs, at room, liquid nitrogen, and liquid helium temperatures (i.e. 300, 77 and 4.2 K)
引用
收藏
页数:5
相关论文
共 11 条
  • [1] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [2] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [3] Compact Physics-Based Circuit Models for Graphene Nanoribbon Interconnects
    Naeemi, Azad
    Meindl, James D.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (09) : 1822 - 1833
  • [4] Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    Nakada, K
    Fujita, M
    Dresselhaus, G
    Dresselhaus, MS
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17954 - 17961
  • [5] Stability Analysis in Graphene Nanoribbon Interconnects
    Nasiri, Saeed Haji
    Moravvej-Farshi, Mohammad Kazem
    Faez, Rahim
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (12) : 1458 - 1460
  • [6] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669
  • [7] Analysis of graphene nanoribbons as a channel material for field-effect transistors
    Obradovic, B
    Kotlyar, R
    Heinz, F
    Matagne, P
    Rakshit, T
    Giles, MD
    Stettler, MA
    Nikonov, DE
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (14)
  • [8] High-temperature quenching of electrical resistance in graphene interconnects
    Shao, Q.
    Liu, G.
    Teweldebrhan, D.
    Balandin, A. A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (20)
  • [9] Moving towards a graphene world
    Van Noorden, Richard
    [J]. NATURE, 2006, 442 (7100) : 228 - 229
  • [10] Modeling, Analysis, and Design of Graphene Nano-Ribbon Interconnects
    Xu, Chuan
    Li, Hong
    Banerjee, Kaustav
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (08) : 1567 - 1578