Vortices in high-performance high-temperature superconductors

被引:209
作者
Kwok, Wai-Kwong [1 ]
Welp, Ulrich [1 ]
Glatz, Andreas [1 ,2 ]
Koshelev, Alexei E. [1 ]
Kihlstrom, Karen J. [1 ,3 ]
Crabtree, George W. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[3] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA
关键词
superconductivity; critical current; vortex matter; vortex pinning; superconducting wires; time-dependent Ginzburg-Landau; GINZBURG-LANDAU EQUATIONS; CRITICAL-CURRENT-DENSITY; LATTICE MELTING TRANSITION; PB-ION IRRADIATION; FLUX-LINE-LATTICE; COMPUTER-SIMULATION; COATED CONDUCTORS; CRITICAL CURRENTS; RADIATION-DAMAGE; COLUMNAR DEFECTS;
D O I
10.1088/0034-4885/79/11/116501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] The role of sol gel processing in the development of high-temperature superconductors for AC applications
    Glowacki, B. A.
    Mosiadz, M.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2009, 51 (03) : 335 - 347
  • [32] Numerical simulations on the role of the defect size on the critical current in high-temperature superconductors
    Al Khawaja, U
    Benkraouda, M
    Obaidat, IM
    Alneaimi, S
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 442 (01): : 1 - 8
  • [33] Mechanism of critical current suppression in high-temperature superconductors with increasing concentration of defects
    I. A. Rudnev
    D. S. Odintsov
    V. A. Kashurnikov
    Bulletin of the Russian Academy of Sciences: Physics, 2007, 71 (8) : 1086 - 1088
  • [34] Comparison of Electromechanical Properties and Lattice Distortions of Different Cuprate High-Temperature Superconductors
    Scheuerlein, C.
    Bjoerstad, R.
    Grether, A.
    Rikel, M. O.
    Hudspeth, J.
    Sugano, M.
    Ballarino, A.
    Bottura, L.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
  • [35] SCALING LAW FOR CRITICAL CURRENTS AND MAGNETIZATION IN HIGH-TEMPERATURE SUPERCONDUCTORS
    NEUMULLER, HW
    RIES, G
    BOCK, J
    PREISLER, E
    CRYOGENICS, 1990, 30 (07) : 639 - 642
  • [36] Instabilities of doped Mott insulators and the properties of high-temperature superconductors
    Guidry, Mike
    Sun, Yang
    Wu, Cheng-Li
    NUCLEI AND MESOSCOPIC PHYSICS, 2008, 995 : 160 - +
  • [37] The crystal field in rare earth based high-temperature superconductors
    Mesot, J
    Furrer, A
    JOURNAL OF SUPERCONDUCTIVITY, 1997, 10 (06): : 623 - 643
  • [38] Precession of spinning magnets levitated over high-temperature superconductors
    Rossman, CE
    Budnick, JI
    PHYSICA C, 1998, 295 (3-4): : 304 - 329
  • [39] Two-dimensional behavior of bulk high-temperature superconductors
    Mikheenko, PN
    Abaliosheva, IS
    Lewandowski, SJ
    FIZIKA NIZKIKH TEMPERATUR, 1996, 22 (04): : 364 - 374
  • [40] Enhanced critical currents in high-temperature superconductors with splayed pins
    Olson, CJ
    Scalettar, RT
    Zimányi, GT
    PHYSICA C, 2000, 332 (1-4): : 353 - 355