Vortices in high-performance high-temperature superconductors

被引:209
作者
Kwok, Wai-Kwong [1 ]
Welp, Ulrich [1 ]
Glatz, Andreas [1 ,2 ]
Koshelev, Alexei E. [1 ]
Kihlstrom, Karen J. [1 ,3 ]
Crabtree, George W. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[3] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA
关键词
superconductivity; critical current; vortex matter; vortex pinning; superconducting wires; time-dependent Ginzburg-Landau; GINZBURG-LANDAU EQUATIONS; CRITICAL-CURRENT-DENSITY; LATTICE MELTING TRANSITION; PB-ION IRRADIATION; FLUX-LINE-LATTICE; COMPUTER-SIMULATION; COATED CONDUCTORS; CRITICAL CURRENTS; RADIATION-DAMAGE; COLUMNAR DEFECTS;
D O I
10.1088/0034-4885/79/11/116501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Radiation effects in high-temperature composite superconductors
    Troitskii A.V.
    Demikhov T.E.
    Antonova L.K.
    Didyk A.Y.
    Mikhailova G.N.
    Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, 10 (2) : 381 - 392
  • [22] Microwave Josephson absorption of high-temperature superconductors
    Niewolski, J
    Kolodziejczyk, A
    Zajac, T
    Woch, WM
    Tarnawski, Z
    Przybylski, K
    Brylewski, T
    Gritzner, G
    Enengl, M
    König, W
    Heiml, O
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 388 : 465 - 466
  • [23] Quantum percolation in cuprate high-temperature superconductors
    Phillips, J. C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (29) : 9917 - 9919
  • [24] Hyperbolic pairing and stripes in high-temperature superconductors
    Belyavsky, VI
    Kopaev, YV
    PHYSICS LETTERS A, 2001, 287 (1-2) : 152 - 160
  • [25] High-temperature superconductors: underlying physics and applications
    Bussmann-Holder, Annette
    Keller, Hugo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2020, 75 (1-2): : 3 - 14
  • [26] Review on high-performance bulk MgB2 superconductors
    Muralidhar, M.
    Shadab, Malik
    Srikanth, A. Sai
    Jirsa, M.
    Jacques, N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (05)
  • [27] Universal Intermediate Phases and Nanostructures of High-Temperature Superconductors
    J. C. Phillips
    Journal of Superconductivity, 2002, 15 : 393 - 398
  • [28] Universal intermediate phases and nanostructures of high-temperature superconductors
    Phillips, IC
    JOURNAL OF SUPERCONDUCTIVITY, 2002, 15 (05): : 393 - 398
  • [29] TRANSPORT CRITICAL CURRENTS IN GRANULAR HIGH-TEMPERATURE SUPERCONDUCTORS
    NEUHAUS, W
    WINZER, K
    CRYOGENICS, 1992, 32 (04) : 357 - 361
  • [30] Oxides as substrates for thin films of high-temperature superconductors
    Mendoza-Alvarez, ME
    Tabares-Muñoz, C
    REVISTA MEXICANA DE FISICA, 2000, 46 (01) : 8 - 13