Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion

被引:21
作者
Bobadilla-Fazzini, Roberto A. [1 ]
Paz Cortes, Maria [2 ,3 ,4 ]
Maass, Alejandro [3 ,4 ,5 ]
Parada, Pilar [1 ]
机构
[1] BioSigma SA, Santiago, Chile
[2] UMI2807 CNRS, Ctr Math Modeling, Lab Bioinformat & Math Genome, Santiago, Chile
[3] FONDAP Ctr Genome Regulat, Santiago, Chile
[4] Univ Chile, Fac Math & Phys Sci, Santiago, Chile
[5] UMI2807 CNRS, Ctr Math Modeling, Dept Engn Math, Santiago, Chile
来源
AMB EXPRESS | 2014年 / 4卷
关键词
Copper; Chalcopyrite; Bioleaching; Chloride ion; Chloride resistance; Sulfobacillus; FERROUS IRON OXIDATION; HALOTOLERANT; THIOOXIDANS; BACTERIUM; CULTURE;
D O I
10.1186/s13568-014-0084-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Currently more than 90% of the world's copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194: 6327-6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50 degrees C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013-03335.
引用
收藏
页数:5
相关论文
共 19 条
[1]  
Chilean Copper Commission (COCHILCO), 2014, MIN PROD DAT
[2]  
Doebrich J., 2009, Copper - a metal for the ages: U.S. Geological Survey fact sheet
[3]   Silicate mineral dissolution during heap bioleaching [J].
Dopson, Mark ;
Halinen, Anna-Kaisa ;
Rahrmen, Nelli ;
Bostrom, Dan ;
Sundkvist, Jan-Eric ;
Riekkola-Vanhanen, Marja ;
Kaksonen, Anna H. ;
Puhakka, Jaakko A. .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 99 (04) :811-820
[4]   Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate [J].
Fazzini, Roberto A. Bobadilla ;
Levican, Gloria ;
Parada, Pilar .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (03) :771-780
[5]   Effect of Chloride on Ferrous Iron Oxidation by a Leptospirillum ferriphilum-Dominated Chemostat Culture [J].
Gahan, Chandra Sekhar ;
Sundkvist, Jan-Eric ;
Dopson, Mark ;
Sandstrom, Ake .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 106 (03) :422-431
[6]   Halocarbons produced by natural oxidation processes during degradation of organic matter [J].
Keppler, F ;
Eiden, R ;
Niedan, V ;
Pracht, J ;
Schöler, HF .
NATURE, 2000, 403 (6767) :298-301
[7]   Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi [J].
Konishi, Y ;
Asai, S ;
Tokushige, M ;
Suzuki, T .
BIOTECHNOLOGY PROGRESS, 1999, 15 (04) :681-688
[8]  
LAWSON EN, 1995, BIOHYDROMETALLURGICA, V1, P165
[9]   OrthoMCL: Identification of ortholog groups for eukaryotic genomes [J].
Li, L ;
Stoeckert, CJ ;
Roos, DS .
GENOME RESEARCH, 2003, 13 (09) :2178-2189
[10]   Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic 'Thiobacillus prosperus' [J].
Nicolle, James Le C. ;
Simmons, Susan ;
Bathe, Stephan ;
Norris, Paul R. .
MICROBIOLOGY-SGM, 2009, 155 :1302-1309