D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish

被引:17
作者
Ghiselli, G
Farber, SA
机构
[1] Thomas Jefferson Univ, Dept Pathol & Cell Biol, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Kimmel Canc Ctr, Philadelphia, PA 19107 USA
[3] Thomas Jefferson Univ, Dept Microbiol & Immunol, Philadelphia, PA 19107 USA
来源
BMC DEVELOPMENTAL BIOLOGY | 2005年 / 5卷
关键词
D O I
10.1186/1471-213X-5-19
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Heparan sulfate (HS) is an ubiquitous component of the extracellular matrix that binds and modulates the activity of growth factors, cytokines and proteases. Animals with defective HS biosynthesis display major developmental abnormalities however the processes that are affected remain to be defined. D-glucuronyl-C5-epimerase (Glce) is a key HS chain modifying enzyme that catalyses the conversion of glucuronic acid into iduronic acid, a biosynthetic step that enhances HS biological activity. In this study the role of Glce during early zebrafish development has been investigated. Results: Two Glce-like proteins (Glce-A and -B) are expressed in zebrafish at all times. They are the products of two distinct genes that, based on chromosomal mapping, are both orthologues of the same single human gene. Transcripts for both proteins were detected in fertilized zebrafish embryos prior to the onset of zygotic transcription indicating their maternal origin. At later developmental stages the epimerases are expressed widely throughout gastrulation and then become restricted to the hindbrain at 24 h post-fertilization. By monitoring the expression of well characterized marker genes during gastrulation, we have found that misexpression of Glce causes a dose-dependent expansion of the ventral structures, whereas protein knockdown using targeted antisense morpholino oligonucleotides promotes axis dorsalization. The ventralizing activity of Bmp2b is enhanced by Glce overexpression whereas Glce knockdown impairs Bmp2b activity. Conclusion: Glce activity is an important determinant of of dorso-ventral axis formation and patterning in zebrafish. In particular Glce acts during gastrulation by affecting Bmp-mediated cell specification. The results obtained further corroborate the concept that HS encodes information that affect morphogenesis during early vertebrate development.
引用
收藏
页数:13
相关论文
共 73 条
[1]   Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila [J].
Baeg, GH ;
Perrimon, N .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (05) :575-580
[2]   Functions of cell surface heparan sulfate proteoglycans [J].
Bernfield, M ;
Götte, M ;
Park, PW ;
Reizes, O ;
Fitzgerald, ML ;
Lincecum, J ;
Zako, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :729-777
[3]  
BINK RJ, 2003, J BIOL CHEM
[4]   Differential sulfations and epimerization define heparan sulfate specificity in nervous system development [J].
Bülow, HE ;
Hobert, O .
NEURON, 2004, 41 (05) :723-736
[5]   Structure and biological interactions of heparin and heparan sulfate [J].
Casu, B ;
Lindahl, U .
ADVANCES IN CARBOHYDRATE CHEMISTRY AND BIOCHEMISTRY, VOL 57, 2001, 57 :159-206
[6]   The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum [J].
Chi, CL ;
Martinez, S ;
Wurst, W ;
Martin, GR .
DEVELOPMENT, 2003, 130 (12) :2633-2644
[7]   Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase [J].
Crawford, BE ;
Olson, SK ;
Esko, JD ;
Pinhal, MAS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (24) :21538-21543
[8]   Developmental roles of the glypicans [J].
De Cat, B ;
David, G .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2001, 12 (02) :117-125
[9]   INTRAEMBRYONIC HEMATOPOIETIC-CELL MIGRATION DURING VERTEBRATE DEVELOPMENT [J].
DETRICH, HW ;
KIERAN, MW ;
CHAN, FY ;
BARONE, LM ;
YEE, K ;
RUNDSTADLER, JA ;
PRATT, S ;
RANSOM, D ;
ZON, LI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10713-10717
[10]   Order out of chaos: Assembly of ligand binding sites in heparan sulfate [J].
Esko, JD ;
Selleck, SB .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :435-471