Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model

被引:30
作者
Koopman, Siem Jan [1 ,2 ,3 ]
Lit, Rutger [1 ,2 ]
Lucas, Andre [1 ,2 ]
机构
[1] Vrije Univ Amsterdam, Sch Business & Econ, NL-1081 HV Amsterdam, Netherlands
[2] Tinbergen Inst, NL-1082 MS Amsterdam, Netherlands
[3] Aarhus Univ, CREATES, Aarhus, Denmark
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
High-frequency data; Importance sampling; Non-Gaussian time series models; Numerical integration; Skellam; Volatility models; TIME-SERIES; DIFFERENCE; FREQUENCY; INFERENCE;
D O I
10.1080/01621459.2017.1302878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study intraday stochastic volatility for four liquid stocks traded on the New York Stock Exchange using a new dynamic Skellam model for high-frequency tick-by-tick discrete price changes. Since the likelihood function is analytically intractable, we rely on numerical methods for its evaluation. Given the high number of observations per series per day (1000 to 10,000), we adopt computationally efficient methods including Monte Carlo integration. The intraday dynamics of volatility and the high number of trades without price impact require nontrivial adjustments to the basic dynamic Skellam model. In-sample residual diagnostics and goodness-of-fit statistics show that the final model provides a good fit to the data. An extensive day-to-day forecasting study of intraday volatility shows that the dynamic modified Skellam model provides accurate forecasts compared to alternative modeling approaches. Supplementary materials for this article are available online.
引用
收藏
页码:1490 / 1503
页数:14
相关论文
共 49 条
[21]  
Falkenberry T. N., 2002, TECHNICAL REPORT
[22]   True integer value time series [J].
Freeland, R. Keith .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2010, 94 (03) :217-229
[23]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[24]  
Hansen P. R., 2016, FASCINATION PROBABIL, P361
[25]   Realized variance and market microstructure noise [J].
Hansen, PR ;
Lunde, A .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2006, 24 (02) :127-161
[26]   FORECASTING HOURLY ELECTRICITY DEMAND USING TIME-VARYING SPLINES [J].
HARVEY, A ;
KOOPMAN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) :1228-1236
[27]   The frequency distribution of the difference between two independent variates following the same poisson distribution. [J].
Irwin, JO .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1937, 100 :415-416
[28]  
Johnson N.L., 1992, UNIVARIATE DISCRETE
[29]   A state space model for multivariate longitudinal count data [J].
Jorgensen, B ;
Lundbye-Christensen, S ;
Song, PXK ;
Sun, L .
BIOMETRIKA, 1999, 86 (01) :169-181
[30]   Time series of count data: modeling, estimation and diagnostics [J].
Jung, Robert C. ;
Kukuk, Martin ;
Liesenfeld, Roman .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) :2350-2364