Effect of gadolinium adatoms on the transport properties of graphene

被引:16
作者
Alemani, M. [1 ]
Barfuss, A. [1 ]
Geng, B. [1 ]
Girit, C. [1 ]
Reisenauer, P. [1 ]
Crommie, M. F. [1 ,2 ]
Wang, F. [1 ,2 ]
Zettl, A. [1 ,2 ]
Hellman, F. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
SINGLE; GAS;
D O I
10.1103/PhysRevB.86.075433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical transport properties of graphene doped with gadolinium (Gd) adatoms have been measured. The gate voltage dependence of the conductivity shows that Gd produces n doping of graphene. The charged Gd ions act as scattering centers, lowering the sample mobility for both electrons and holes. The doping efficiency of Gd at 77 K reproduces theoretical predictions (0.7 electron per Gd adatom). On raising the sample temperature to even 150 K, clustering effects are observed and substantially modify the transport.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] A self-consistent theory for graphene transport
    Adam, Shaffique
    Hwang, E. H.
    Galitski, V. M.
    Das Sarma, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18392 - 18397
  • [2] Consolidation of Carbon Nanofiber/Copper Composites by Hot-Pressing and Spark Plasma Sintering: A Comparative Study
    Barcena, Jorge
    Martinez, Vladimir
    Martinez, Ramon
    Maudes, Jon
    Sarries, Jose-Ignacio
    Caro, Inaki
    Gonzalez, Javier-Jesus
    Coleto, Javier
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (03) : 1797 - 1802
  • [3] First-principles study of metal adatom adsorption on graphene
    Chan, Kevin T.
    Neaton, J. B.
    Cohen, Marvin L.
    [J]. PHYSICAL REVIEW B, 2008, 77 (23):
  • [4] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [5] Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices
    Cheng, Zengguang
    Zhou, Qiaoyu
    Wang, Chenxuan
    Li, Qiang
    Wang, Chen
    Fang, Ying
    [J]. NANO LETTERS, 2011, 11 (02) : 767 - 771
  • [6] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613
  • [7] Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices
    Farmer, Damon B.
    Golizadeh-Mojarad, Roksana
    Perebeinos, Vasili
    Lin, Yu-Ming
    Tulevski, George S.
    Tsang, James C.
    Avouris, Phaedon
    [J]. NANO LETTERS, 2009, 9 (01) : 388 - 392
  • [8] Metal-insulator transition and giant negative magnetoresistance in amorphous magnetic rare earth silicon alloys
    Hellman, F
    Tran, MQ
    Gebala, AE
    Wilcox, EM
    Dynes, RC
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (22) : 4652 - 4655
  • [9] Evidence of the role of contacts on the observed electron-hole asymmetry in graphene
    Huard, B.
    Stander, N.
    Sulpizio, J. A.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW B, 2008, 78 (12):
  • [10] Strong metal adatom-substrate interaction of Gd and Fe with graphene
    Hupalo, M.
    Binz, S.
    Tringides, M. C.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (04)