A Remark on the A Posteriori Error Analysis of Discontinuous Galerkin Methods for the Obstacle Problem

被引:14
作者
Gudi, Thirupathi [1 ]
Porwal, Kamana [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Finite Element; Discontinuous Galerkin; A Posteriori Error Estimate; Obstacle Problem; Variational Inequalities; FINITE-ELEMENT-METHOD; APPROXIMATION; CONVERGENCE; ESTIMATORS;
D O I
10.1515/cmam-2013-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem derived in [25]. Under a mild assumption on the trace of obstacle, we derive a reliable a posteriori error estimator which does not involve min/max functions. A key in this approach is an auxiliary problem with discrete obstacle. Applications to various discontinuous Galerkin finite element methods are presented. Numerical experiments show that the new estimator obtained in this article performs better.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 1995, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]  
[Anonymous], MATH COMPUT
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[6]  
Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd
[7]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[8]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[9]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99
[10]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421