Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning

被引:191
|
作者
de Beer, Martin P. [1 ]
van der Laan, Harry L. [2 ]
Cole, Megan A. [1 ]
Whelan, Riley J. [1 ]
Burns, Mark A. [1 ,3 ]
Scott, Timothy F. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 01期
关键词
3D; TECHNOLOGY; IMPACT;
D O I
10.1126/sciadv.aau8723
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Contemporary, layer-wise additive manufacturing approaches afford sluggish object fabrication rates and often yield parts with ridged surfaces; in contrast, continuous stereolithographic printing overcomes the layer-wise operation of conventional devices, greatly increasing achievable print speeds and generating objects with smooth surfaces. We demonstrate a novel method for rapid and continuous stereolithographic additive manufacturing by using two-color irradiation of (meth) acrylate resin formulations containing complementary photoinitiator and photoinhibitor species. In this approach, photopatterned polymerization inhibition volumes generated by irradiation at one wavelength spatially confine the region photopolymerized by a second concurrent irradiation wavelength. Moreover, the inhibition volumes created using this method enable localized control of the polymerized region thickness to effect single-exposure, topographical patterning.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Rapid manufacturing - Laser additive manufacturing
    不详
    ADVANCED MATERIALS & PROCESSES, 2001, 159 (05): : 32 - 36
  • [12] Use of volumetric additive manufacturing as an in-space manufacturing technology
    Waddell, Taylor
    Toombs, Joseph
    Reilly, Ashley
    Schwab, Tristan
    Castaneda, Christian
    Shan, Ingrid
    Lewis, Tasha
    Mohnot, Pranit
    Potter, Dylan
    Taylor, Hayden
    ACTA ASTRONAUTICA, 2023, 211 : 474 - 482
  • [13] Volumetric additive manufacturing of shape memory polymers
    Schwartz, Johanna J.
    Porcincula, Dominique H.
    Cook, Caitlyn C.
    Fong, Erika J.
    Shusteff, Maxim
    POLYMER CHEMISTRY, 2022, 13 (13) : 1813 - 1817
  • [14] Digital additive manufacturing: From rapid prototyping to rapid manufacturing
    Hon, K. K. B.
    PROCEEDINGS OF THE 35TH INTERNATIONAL MATADOR CONFERENCE: FORMERLY THE INTERNATIONAL MACHINE TOOL DESIGN AND RESEARCH CONFERENCE, 2007, : 337 - 340
  • [15] Tomographic Volumetric Additive Manufacturing in Scattering Resins
    Madrid-Wolff, Jorge
    Boniface, Antoine
    Jonin, Matthieu
    Delrot, Paul
    Loterie, Damien
    Moser, Christophe
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [16] Volumetric additive manufacturing via tomographic reconstruction
    Kelly, Brett E.
    Bhattacharya, Indrasen
    Heidari, Hossein
    Shusteff, Maxim
    Spadaccini, Christopher M.
    Taylor, Hayden K.
    SCIENCE, 2019, 363 (6431) : 1075 - +
  • [17] Inverse Rendering for Tomographic Volumetric Additive Manufacturing
    Nicolet, Baptiste
    Wechsler, Felix
    Madrid-wolff, Jorge
    Moser, Christophe
    Jakob, Wenzel
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (06):
  • [18] Multimaterial Vat Polymerization Additive Manufacturing
    Sampson, Kathleen L.
    Deore, Bhavana
    Go, Abigail
    Nayak, Milind Ajith
    Orth, Antony
    Gallerneault, Mary
    Malenfant, Patrick R. L.
    Paquet, Chantal
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (09) : 4304 - 4324
  • [19] Linear patterning of high entropy alloy by additive manufacturing
    Karimi, J.
    Ma, P.
    Jia, Y. D.
    Prashanth, K. G.
    MANUFACTURING LETTERS, 2020, 24 : 9 - 13
  • [20] VOLUMETRIC ADDITIVE MANUFACTURING WITH 3D POINT CLOUD PROJECTION AND SINGLE-PHOTON NONLINEAR POLYMERIZATION
    Jakkinapalli, Aravind
    Wen, Sy-Bor
    PROCEEDINGS OF ASME 2023 HEAT TRANSFER SUMMER CONFERENCE, HT2023, 2023,