Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning

被引:191
|
作者
de Beer, Martin P. [1 ]
van der Laan, Harry L. [2 ]
Cole, Megan A. [1 ]
Whelan, Riley J. [1 ]
Burns, Mark A. [1 ,3 ]
Scott, Timothy F. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 01期
关键词
3D; TECHNOLOGY; IMPACT;
D O I
10.1126/sciadv.aau8723
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Contemporary, layer-wise additive manufacturing approaches afford sluggish object fabrication rates and often yield parts with ridged surfaces; in contrast, continuous stereolithographic printing overcomes the layer-wise operation of conventional devices, greatly increasing achievable print speeds and generating objects with smooth surfaces. We demonstrate a novel method for rapid and continuous stereolithographic additive manufacturing by using two-color irradiation of (meth) acrylate resin formulations containing complementary photoinitiator and photoinhibitor species. In this approach, photopatterned polymerization inhibition volumes generated by irradiation at one wavelength spatially confine the region photopolymerized by a second concurrent irradiation wavelength. Moreover, the inhibition volumes created using this method enable localized control of the polymerized region thickness to effect single-exposure, topographical patterning.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deconvolution volumetric additive manufacturing
    Orth, Antony
    Webber, Daniel
    Zhang, Yujie
    Sampson, Kathleen L.
    de Haan, Hendrick W.
    Lacelle, Thomas
    Lam, Rene
    Solis, Daphene
    Dayanandan, Shyamaleeswari
    Waddell, Taylor
    Lewis, Tasha
    Taylor, Hayden K.
    Boisvert, Jonathan
    Paquet, Chantal
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Deconvolution volumetric additive manufacturing
    Antony Orth
    Daniel Webber
    Yujie Zhang
    Kathleen L. Sampson
    Hendrick W. de Haan
    Thomas Lacelle
    Rene Lam
    Daphene Solis
    Shyamaleeswari Dayanandan
    Taylor Waddell
    Tasha Lewis
    Hayden K. Taylor
    Jonathan Boisvert
    Chantal Paquet
    Nature Communications, 14 (1)
  • [3] Volumetric helical additive manufacturing
    Boniface, Antoine
    Maitre, Florian
    Madrid-Wolff, Jorge
    Moser, Christophe
    LIGHT-ADVANCED MANUFACTURING, 2023, 4 (02):
  • [4] High fidelity volumetric additive manufacturing
    Bhattacharya, Indrasen
    Toombs, Joseph
    Taylor, Hayden
    ADDITIVE MANUFACTURING, 2021, 47
  • [5] Volumetric Additive Manufacturing of SiOC by Xolography
    Huang, Kai
    Franchin, Giorgia
    Colombo, Paolo
    SMALL, 2024, 20 (37)
  • [6] Holographic tomographic volumetric additive manufacturing
    alvarez-Castano, Maria Isabel
    Madsen, Andreas Gejl
    Madrid-Wolff, Jorge
    Sgarminato, Viola
    Boniface, Antoine
    Gluckstad, Jesper
    Moser, Christophe
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [7] Virtual Volumetric Additive Manufacturing (VirtualVAM)
    Weisgraber, Todd H.
    de Beer, Martin P.
    Huang, Sijia
    Karnes, John J.
    Cook, Caitlyn C.
    Shusteff, Maxim
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [8] Volumetric Additive Manufacturing System Optics
    Moran, Bryan D.
    Fong, Erika J.
    Cook, Caitlyn C.
    Shusteff, Maxim
    EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS XIII, 2021, 11698
  • [9] Latent image volumetric additive manufacturing
    Rackson, Charles M.
    Toombs, Joseph T.
    De Beer, Martin P.
    Cook, Caitlyn C.
    Shusteff, Maxim
    Taylor, Hayden K.
    McLeod, Robert R.
    OPTICS LETTERS, 2022, 47 (05) : 1279 - 1282
  • [10] High fidelity volumetric additive manufacturing
    Bhattacharya, Indrasen
    Toombs, Joseph
    Taylor, Hayden
    Additive Manufacturing, 2021, 47