Optical Properties of Nanoporous Gold Sponges Using Model Structures Obtained from Three-dimensional Phase-field Simulation

被引:2
作者
Bohm, S. [1 ,3 ]
Grunert, M. [1 ]
Honig, H. [2 ,3 ]
Wang, D. [2 ,3 ]
Schaaf, P. [2 ,3 ]
Runge, E. [1 ,2 ]
Zhong, J. [4 ]
Lienau, C. [4 ]
机构
[1] Tech Univ Ilmenau, Inst Phys, Ilmenau, Germany
[2] Tech Univ Ilmenau, Dept Elect Engn & Informat Technol, Ilmenau, Germany
[3] TU Ilmenau, Inst Micro & Nanotechnol, Ilmenau, Germany
[4] Carl von Ossietzky Univ Oldenburg, Ultrafast Nanoopt Grp, Inst Phys, Oldenburg, Germany
来源
2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021) | 2021年
关键词
D O I
10.1109/PIERS53385.2021.9694971
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoporous sponge structures show fascinating optical properties related to a strong spatial localization of field modes and a resulting strong field enhancement. In this work, a novel efficient method for the generation of three-dimensional nanoporous sponge structures using time-resolved phase-field simulations is presented. The algorithm for creating the geometries and the underlying equations are discussed. Different sponge geometries are generated and compared with sponges that have been experimentally measured using FIB tomography. Meaningful parameters are defined for the comparison of the geometric properties of the random sponge structures. In addition, the optical properties of the simulated sponges are compared with the experimentally measured sponges. It is shown that a description using effective media does not provide a good agreement to the actual spectra. This shows that the optical properties are largely determined by the local structures. In contrast, the numerically obtained spectra of the phase-field sponge models accounting for the real-space structure show excellent agreement with the spectra of the experimentally measured sponges.
引用
收藏
页码:517 / 523
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 2018, AUT MESHM V 3 5
[2]  
[Anonymous], 2020, COMSOL Multiphysics v. 5.6
[4]  
Carmo Do., 1976, Differential Geometry of Curves and Surfaces 1976 Prentice-Hall, P0
[5]   Effect of Nanoporous Gold Thin Film Morphology on Electrochemical DNA Sensing [J].
Daggumati, Pallavi ;
Matharu, Zimple ;
Seker, Erkin .
ANALYTICAL CHEMISTRY, 2015, 87 (16) :8149-8156
[6]   Evolution of nanoporosity in dealloying [J].
Erlebacher, J ;
Aziz, MJ ;
Karma, A ;
Dimitrov, N ;
Sieradzki, K .
NATURE, 2001, 410 (6827) :450-453
[7]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[8]   Introduction to the Maxwell Garnett approximation: tutorial [J].
Markel, Vadim A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (07) :1244-1256
[9]   Towards Optimal Disorder in Gold Nanosponges for Long-Lived Localized Plasmonic Modes [J].
Schwarz, Felix ;
Runge, Erich .
ANNALEN DER PHYSIK, 2017, 529 (12)
[10]   Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure [J].
Zhong, Jin-Hui ;
Vogelsang, Jan ;
Yi, Jue-Min ;
Wang, Dong ;
Wittenbecher, Lukas ;
Mikaelsson, Sara ;
Korte, Anke ;
Chimeh, Abbas ;
Arnold, Cord L. ;
Schaaf, Peter ;
Runge, Erich ;
Huillier, Anne L' ;
Mikkelsen, Anders ;
Lienau, Christoph .
NATURE COMMUNICATIONS, 2020, 11 (01)