Cooling of isolated neutron stars with pion condensation: Possible fast cooling in a low-symmetry energy model

被引:2
作者
Dohi, Akira [1 ,2 ]
Liu, Helei [3 ]
Noda, Tsuneo [4 ]
Hashimoto, Masa-Aki [1 ]
机构
[1] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
[2] RIKEN, Interdisciplinary Theoret & Math Sci Program iTHE, Wako, Saitama 3510198, Japan
[3] Xinjiang Univ, Sch Phys Sci & Technol, Urumqi 830046, Peoples R China
[4] Kurume Inst Technol, Fukuoka 8300052, Japan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2022年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Neutron stars; equation of state; neutron star cooling; EQUATION-OF-STATE; COMPACT CENTRAL SOURCES; X-RAY SEARCH; NUCLEAR-MATTER; SUPERNOVA-REMNANTS; EMISSION; SUPERFLUIDITY; CONSTRAINTS; RADIUS; MASSES;
D O I
10.1142/S0218301322500069
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, we studied thermal evolution of isolated neutron stars (NSs) including the pion condensation core, with an emphasis on the stiffness of equation of state (EOS). Many temperature observations can be explained by the minimal cooling scenario which excludes the fast neutrino cooling process. However, several NSs are cold enough to require it. The most crucial problem for NS cooling theory is whether the nucleon direct Urca (DU) process is open. The DU process is forbidden if the nucleon symmetry energy is significantly low. Hence, another fast cooling process is required in such an EOS. As the candidate to solve this problem, we consider the pion condensation. We show that the low-symmetry energy model can account for most cooling observations including cold NSs, with strong neutron superfluidity. Simultaneously, it holds the 2 M-circle dot, observations even if the pion condensation core exists. Thus, we propose the possibility of pion condensation, as an exotic state to solve the problem in low-symmetry energy EOSs. We examined the consistency of our EOSs with other various observations as well.
引用
收藏
页数:20
相关论文
共 84 条
  • [1] Measurement of the Soft-Drop Jet Mass in pp Collisions at √s=13 TeV with the ATLAS Detector
    Aaboud, M.
    Aad, G.
    Abbott, B.
    Abdinov, O.
    Abeloos, B.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowicz, H.
    Abreu, H.
    Abreu, R.
    Abulaiti, Y.
    Acharya, B. S.
    Adachi, S.
    Adamczyk, L.
    Adelman, J.
    Adersberger, M.
    Adye, T.
    Affolder, A. A.
    Afik, Y.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahlen, S. P.
    Ahmadov, F.
    Aielli, G.
    Akatsuka, S.
    Akerstedt, H.
    Akesson, T. P. A.
    Akilli, E.
    Akimov, A., V
    Alberghi, G. L.
    Albert, J.
    Albicocco, P.
    Alconada Verzini, M. J.
    Alderweireldt, S. C.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexander, G.
    Alexopoulos, T.
    Alhroob, M.
    Ali, B.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Alkire, S. P.
    Allbrooke, B. M. M.
    Allen, B. W.
    Allport, P. P.
    Aloisio, A.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [2] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (16)
  • [3] [Anonymous], 2013, Novel Superfluids
  • [4] A Massive Pulsar in a Compact Relativistic Binary
    Antoniadis, John
    Freire, Paulo C. C.
    Wex, Norbert
    Tauris, Thomas M.
    Lynch, Ryan S.
    van Kerkwijk, Marten H.
    Kramer, Michael
    Bassa, Cees
    Dhillon, Vik S.
    Driebe, Thomas
    Hessels, Jason W. T.
    Kaspi, Victoria M.
    Kondratiev, Vladislav I.
    Langer, Norbert
    Marsh, Thomas R.
    McLaughlin, Maura A.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Stairs, Ingrid H.
    van Leeuwen, Joeri
    Verbiest, Joris P. W.
    Whelan, David G.
    [J]. SCIENCE, 2013, 340 (6131) : 448
  • [5] Thermal conductivity of neutrons in neutron star cores
    Baiko, DA
    Haensel, P
    Yakovlev, DG
    [J]. ASTRONOMY & ASTROPHYSICS, 2001, 374 (01): : 151 - 163
  • [6] GROUND STATE OF MATTER AT HIGH DENSITIES - EQUATION OF STATE AND STELLAR MODELS
    BAYM, G
    PETHICK, C
    SUTHERLAND, P
    [J]. ASTROPHYSICAL JOURNAL, 1971, 170 (02) : 299 - +
  • [7] Heat blanketing envelopes of neutron stars
    Beznogov, M. V.
    Potekhin, A. Y.
    Yakovlev, D. G.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 919 : 1 - 68
  • [8] Thermal Evolution of Neo-neutron Stars. I. Envelopes, Eddington Luminosity Phase, and Implications for GW170817
    Beznogov, Mikhail V.
    Page, Dany
    Ramirez-Ruiz, Enrico
    [J]. ASTROPHYSICAL JOURNAL, 2020, 888 (02)
  • [9] Was GW170817 a Canonical Neutron Star Merger? Bayesian Analysis with a Third Family of Compact Stars
    Blaschke, David
    Ayriyan, Alexander
    Alvarez-Castillo, David Edwin
    Grigorian, Hovik
    [J]. UNIVERSE, 2020, 6 (06)
  • [10] THE NEAREST MILLISECOND PULSAR REVISITED WITH XMM-NEWTON: IMPROVED MASS-RADIUS CONSTRAINTS FOR PSR J0437-4715
    Bogdanov, Slavko
    [J]. ASTROPHYSICAL JOURNAL, 2013, 762 (02)