THE GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE 5-DIMENSIONAL DEFOCUSING CONFORMAL INVARIANT NLW WITH RADIAL INITIAL DATA IN A CRITICAL BESOV SPACE

被引:4
作者
Miao, Changxing [1 ]
Yang, Jianwei [2 ]
Zhao, Tengfei [3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear wave equation; Strichartz estimates; scattering; hyperbolic coordinates; Morawetz estimates; WAVE-EQUATION; BLOW-UP; ASYMPTOTIC-BEHAVIOR; NONLINEAR KLEIN; CAUCHY-PROBLEM; REGULARITY; EXISTENCE; DECAY;
D O I
10.2140/pjm.2020.305.251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the global well-posedness and scattering for the radial solution to the defocusing conformal invariant nonlinear wave equation with initial data in the critical Besov space B-1,1(3) x B-1,1(2) (R-5). This is the 5-dimensional analogue of Dodson's result (2019), which was the first on the global well-posedness and scattering of the energy subcritical nonlinear wave equation without the uniform boundedness assumption on the critical Sobolev norms employed as a substitute of the missing conservation law with respect to the scaling invariance of the equation. The proof is based on exploiting the structure of the radial solution, developing the Strichartz-type estimates and incorporation of Dodson's strategy (2019), where we also avoid a logarithm-type loss by employing the inhomogeneous Strichartz estimates.
引用
收藏
页码:251 / 290
页数:40
相关论文
共 27 条
[1]  
[Anonymous], 1995, Monogr. Anal.
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Decay estimates for the critical semilinear wave equation [J].
Bahouri, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06) :783-789
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
Colzani L., 2002, ANN MAT PUR APPL, V181, P25, DOI DOI 10.1007/S102310100025
[6]   GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE RADIAL, DEFOCUSING, CUBIC WAVE EQUATION WITH INITIAL DATA IN A CRITICAL BESOV SPACE [J].
Dodson, Benjamin .
ANALYSIS & PDE, 2019, 12 (04) :1023-1048
[7]  
Ginibre J, 1995, OPER THEOR, V78, P153
[8]  
GINIBRE J, 1989, ANN I H POINCARE-AN, V6, P15
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[10]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509