Local Rigidity of Diophantine Translations in Higher-dimensional Tori

被引:9
作者
Karaliolios, Nikolaos [1 ]
机构
[1] Imperial Coll London, South Kensington Campus, London SW7 2AZ, England
关键词
KAM theory; quasi-periodic dynamics; Diophantine translations; local rigidity; WANDERING DOMAINS; DIFFEOMORPHISMS;
D O I
10.1134/S1560354718010021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a theorem asserting that, given a Diophantine rotation alpha in a torus T (d) equivalent to R (d) /Z (d) , any perturbation, small enough in the C-infinity topology, that does not destroy all orbits with rotation vector alpha is actually smoothly conjugate to the rigid rotation. The proof relies on a KAM scheme (named after Kolmogorov-Arnol'd-Moser), where at each step the existence of an invariant measure with rotation vector alpha assures that we can linearize the equations around the same rotation alpha. The proof of the convergence of the scheme is carried out in the C-infinity category.
引用
收藏
页码:12 / 25
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1995, ENCY MATH APPL
[2]  
Arnol'd V.I., 1961, IZV AKAD NAUK SSSR M, V25, P21
[3]  
Bounemoura A., 2017, ARXIV170506909
[4]  
de Melo Welington, 1993, ERGEB MATH GRENZGEB, V25
[5]   RIGIDITY RESULTS FOR QUASIPERIODIC SL(2, R)-COCYCLES [J].
Fayad, Bassam ;
Krikorian, Raphael .
JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) :479-510
[6]  
Franks J., 1995, DYNAMICAL SYSTEMS CH, V1, P41
[7]   STRICT ERGODICITY AND TRANSFORMATION OF TORUS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (04) :573-&
[8]  
Herman R.M., 1979, I HAUTES ETUDES SCI, V49, P5
[9]  
Karaliolios N., 2016, MEM SOC MATH FR, V146
[10]  
KRIKORIAN R, 1999, ASTERISQUE, V259