On the error bound in a combinatorial central limit theorem

被引:22
作者
Chen, Louis H. Y. [1 ]
Fang, Xiao [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
关键词
combinatorial central limit theorem; concentration inequality; exchangeable pairs; Stein's method; APPROXIMATION; REMAINDER;
D O I
10.3150/13-BEJ569
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X-ij: 1 <= i, j <= n} be an n x n array of independent random variables where n >= 2. Let it be a uniform random permutation of {1, 2,... n}, independent of X, and let W = Sigma(n)(i=1) X-i pi(i). Suppose X is standardized so that EW = 0, Var(W) = 1. We prove that the Kolmogorov distance between the distribution of W and the standard normal distribution is bounded by 451 Sigma(n)(i,j=1) E vertical bar X-ij vertical bar(3)/n. Our approach is by Stein's method of exchangeable pairs and the use of a concentration inequality.
引用
收藏
页码:335 / 359
页数:25
相关论文
共 24 条
[1]  
[Anonymous], INT MATH FORUM
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], LECT NOTES STAT
[4]  
Barbour AD, 2005, LECT NOTES SER INST, V4, pIX
[5]  
BOLTHAUSEN E, 1984, Z WAHRSCHEINLICHKEIT, V66, P379, DOI 10.1007/BF00533704
[6]  
CHEN L. HY, 1986, IMA PREPRINT SERIES, V243
[7]   Normal approximation under local dependence [J].
Chen, LHY ;
Shao, QM .
ANNALS OF PROBABILITY, 2004, 32 (3A) :1985-2028
[8]   APPROXIMATION THEOREM FOR SUMS OF CERTAIN RANDOMLY SELECTED INDICATORS [J].
CHEN, LHY .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 33 (01) :69-74
[9]   A non-uniform Berry-Esseen bound via Stein's method [J].
Chen, LHY ;
Shao, QM .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (02) :236-254
[10]  
Chen LHY, 2005, LECT NOTES SER INST, V4, P1