Prokaryotic genomes in the light of genomic analyses

被引:0
|
作者
Dziewit, Lukasz [1 ]
Bartosik, Dariusz [1 ]
机构
[1] Uniwersytetu Warszawskiego, Wydzial Biol, Inst Mikrobiol, Zaklad Genet Bakterii, PL-02096 Warsaw, Poland
来源
POSTEPY MIKROBIOLOGII | 2011年 / 50卷 / 02期
关键词
genome; horizontal gene transfer; pangenome; plasmid; BACTERIAL PAN-GENOME; GENE-TRANSFER; NANOARCHAEUM-EQUITANS; BORRELIA-BURGDORFERI; ESCHERICHIA-COLI; EVOLUTION; SEQUENCE; CELL; PREDICTION; DIVERSE;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genomic analyses revealed that prokaryotic genomes are very diverse. They differ in size, architecture and genetic information which they encode. The plasticity of the genomes is the result of several factors, including (i) horizontal gene transfer (responsible for the acquisition of exogenous DNA), (ii) genetic rearrangements (resulting from diverse recombinational events), and (iii) genome reduction, which leads to the loss of genetic information of a low adaptative value. The insertions and deletions of DNA permanently alter the genomes and result in adaptation of the microorganisms to their specific environments by genome optimization. For this reason we observe a straight correlation between metabolic versatility of prokaryotes and the size of their genomes.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [1] An Integrative Approach for Genomic Island Prediction in Prokaryotic Genomes
    Wang, Han
    Fazekas, John
    Booth, Matthew
    Liu, Qi
    Che, Dongsheng
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 404 - +
  • [2] Solitary restriction endonucleases in prokaryotic genomes
    Ershova, Anna S.
    Karyagina, Anna S.
    Vasiliev, Mikhail O.
    Lyashchuk, Alexander M.
    Lunin, Vladimir G.
    Spirin, Sergey A.
    Alexeevski, Andrei V.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (20) : 10107 - 10115
  • [3] Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses
    Shi, Chengcheng
    Han, Kai
    Li, Liangwei
    Seim, Inge
    Lee, Simon Ming-Yuen
    Xu, Xun
    Yang, Huanming
    Fan, Guangyi
    Liu, Xin
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [4] Pseudofinder: Detection of Pseudogenes in Prokaryotic Genomes
    Syberg-Olsen, Mitchell J.
    Garber, Arkadiy, I
    Keeling, Patrick J.
    McCutcheon, John P.
    Husnik, Filip
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (07)
  • [5] Coevolution of the Organization and Structure of Prokaryotic Genomes
    Touchon, Marie
    Rocha, Eduardo P. C.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2016, 8 (01):
  • [6] Tracing lifestyle adaptation in prokaryotic genomes
    Altermann, Eric
    FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [7] Missing genes in the annotation of prokaryotic genomes
    Warren, Andrew S.
    Archuleta, Jeremy
    Feng, Wu-chun
    Setubal, Joao Carlos
    BMC BIOINFORMATICS, 2010, 11
  • [8] Structure of prokaryotic genomes
    Borinskaya, SA
    Yankovsky, NK
    MOLECULAR BIOLOGY, 1999, 33 (06) : 831 - 845
  • [9] PRFect: a tool to predict programmed ribosomal frameshifts in prokaryotic and viral genomes
    Mcnair, Katelyn
    Salamon, Peter
    Edwards, Robert A.
    Segall, Anca M.
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [10] Editorial: Computational analysis of promoters in prokaryotic genomes
    Lin, Hao
    Zuo, Yongchun
    Azhagiya Singam, Ettayapuram Ramaprasad
    FRONTIERS IN MICROBIOLOGY, 2023, 14