Dynamic wetting boundary condition for continuum hydrodynamics with multi-component lattice Boltzmann equation simulation method

被引:8
|
作者
Hollis, A. P. [1 ]
Spencer, T. J. [1 ]
Halliday, I. [1 ]
Care, C. M. [1 ]
机构
[1] Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
lattice Boltzmann; multicomponent flow; wetting; CLOSURE SCHEME; LIQUID-GAS; FLUIDS;
D O I
10.1093/imamat/hxr008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present methodological innovations to the multicomponent lattice Boltzmann equation simulation method of Lishchuk, Care and Halliday (2003, Phys. Rev. E, 67, 036701) which allow for the simulation of dynamic contact lines (DCLs) in the continuum approximation. The scope of the improvements is demonstrated by examples validated by quantitative results. Our innovations allow the simulator access to an expanded range of simulation parameters like viscosity, viscosity contrast and interfacial tensions, and to obtain data with low levels of interfacial micro-current activity, in the region of the DCL.
引用
收藏
页码:726 / 742
页数:17
相关论文
共 50 条
  • [1] Interfacial micro-currents in continuum-scale multi-component lattice Boltzmann equation hydrodynamics
    Halliday, I.
    Lishchuk, S. V.
    Spencer, T. J.
    Burgin, K.
    Schenkel, T.
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 219 : 286 - 296
  • [2] Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method
    Onishi, J
    Chen, Y
    Ohashi, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) : 84 - 92
  • [3] Lattice Boltzmann method for multi-component, non-continuum mass diffusion
    Joshi, Abhijit S
    Peracchio, Aldo A
    Grew, Kyle N
    Chiu, Wilson K S
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (23) : 7593 - 7600
  • [4] Chromo-dynamic multi-component lattice Boltzmann equation scheme for axial symmetry
    Spendlove, J.
    Xu, X.
    Schenkel, T.
    Seaton, M.
    Halliday, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (14)
  • [5] Multi-component lattice Boltzmann equation for mesoscale blood flow
    Dupin, MM
    Halliday, I
    Care, CM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (31): : 8517 - 8534
  • [6] Suppressing the coalescence in the multi-component lattice Boltzmann method
    Farhat, H.
    Lee, J. S.
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 11 (02) : 137 - 143
  • [7] Suppressing the coalescence in the multi-component lattice Boltzmann method
    H. Farhat
    J. S. Lee
    Microfluidics and Nanofluidics, 2011, 11 : 137 - 143
  • [8] Verification of multi-component lattice-Boltzmann method
    Niimura, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2): : 157 - 160
  • [9] Wetting Boundary Condition in an Improved Lattice Boltzmann Method for Nonideal Gases
    Lou, Qin
    Yang, Mo
    Xu, Hongtao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (04) : 1116 - 1130
  • [10] A mass conserving boundary condition for the lattice Boltzmann equation method
    Bao, Jie
    Yuan, Peng
    Schaefer, Laura
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (18) : 8472 - 8487