An algorithm for mining maximal frequent itemsets without candidate generation

被引:0
|
作者
Li Haiwen [1 ]
Yang Li [1 ]
Hong De [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Comp Sci & Technol, Xian 710054, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL, AND SYSTEMS SCIENCES, AND ENGINEERING (CESSE 2011) | 2011年
关键词
Data mining; Association rule; Maximal frequent itemset; Frequent pattern tree;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discovering maximal frequent itemsets is a key problem in mining association rules. In this paper we present an efficient algorithm MFP-growth(maximal Frequent Pattern growth) based on frequent pattern tree(FP-Tree) for mining maximal frequent itemsets without candidate generation in the mining period, therefore it increases the mining efficiency. Our experimental result shows that MFP-growth has excellent performance in mining maximal frequent itemsets.
引用
收藏
页码:330 / 333
页数:4
相关论文
共 50 条
  • [1] Mining frequent closed itemsets without candidate generation
    Chen, K
    PARALLEL AND DISTRIBUTED PROCESSING AND APPLICATIONS, 2005, 3758 : 668 - 677
  • [2] Scalable algorithm for mining maximal frequent itemsets
    Li, QH
    Wang, H
    He, Y
    Jiang, SY
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 143 - 146
  • [3] GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets
    Karam Gouda
    Mohammed J. Zaki
    Data Mining and Knowledge Discovery, 2005, 11 : 223 - 242
  • [4] GenMax: An efficient algorithm for mining maximal frequent itemsets
    Gouda, K
    Zaki, MJ
    DATA MINING AND KNOWLEDGE DISCOVERY, 2005, 11 (03) : 223 - 242
  • [5] Mining maximal frequent itemsets in uncertain data
    Tang, Xianghong
    Yang, Quanwei
    Zheng, Yang
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (09): : 29 - 34
  • [6] Mining maximal frequent itemsets for intrusion detection
    Wang, H
    Li, QH
    Xiong, HY
    Jiang, SY
    GRID AND COOPERATIVE COMPUTING GCC 2004 WORKSHOPS, PROCEEDINGS, 2004, 3252 : 422 - 429
  • [7] A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table
    Yin Ming
    Wang Wenjie
    Zhang Xuanyu
    Jiang Jijiao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (08) : 2009 - 2016
  • [8] An Algorithm for Mining Frequent Closed Itemsets
    Zhang Tiejun
    Yang Junrui
    Wang Xiuqin
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 240 - +
  • [9] Mining Maximal Frequent Itemsets over Sampling Databases
    Li, Haifeng
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION (IFEEA 2015), 2016, 54 : 28 - 31
  • [10] An efficient algorithm for mining maximal frequent itemsets over data streams
    Mao Y.
    Yang L.
    Li H.
    Chen Z.
    Liu L.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (03): : 246 - 252