An algorithm for mining maximal frequent itemsets without candidate generation

被引:0
作者
Li Haiwen [1 ]
Yang Li [1 ]
Hong De [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Comp Sci & Technol, Xian 710054, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL, AND SYSTEMS SCIENCES, AND ENGINEERING (CESSE 2011) | 2011年
关键词
Data mining; Association rule; Maximal frequent itemset; Frequent pattern tree;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discovering maximal frequent itemsets is a key problem in mining association rules. In this paper we present an efficient algorithm MFP-growth(maximal Frequent Pattern growth) based on frequent pattern tree(FP-Tree) for mining maximal frequent itemsets without candidate generation in the mining period, therefore it increases the mining efficiency. Our experimental result shows that MFP-growth has excellent performance in mining maximal frequent itemsets.
引用
收藏
页码:330 / 333
页数:4
相关论文
共 7 条
[1]  
Agrawal R., 1994, P 20 INT C VER LARG, P487, DOI DOI 10.5555/645920.672836
[2]  
[Anonymous], P 1998 ACM SIGMOD IN
[3]  
HAN J, 2000, P 2000 ACM SIGMOD IN, P1, DOI DOI 10.1145/342009.335372
[4]  
Lin DI, 1998, LECT NOTES COMPUT SC, V1377, P105
[5]  
LU SF, 2001, SOFTWARE T, V12, P293
[6]  
RIGOUTSOS L, 1998, TEIRESIAS ALGORITHM, P55
[7]  
SONG YQ, 2003, SOFTWARE T, V14, P1586