Renormalization of drift and diffusivity in random gradient flows

被引:14
作者
Dean, DS
Drummond, IT
Horgan, RR
机构
[1] UNIV ROMA LA SAPIENZA,IST NAZL FIS NUCL,I-00185 ROME,ITALY
[2] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 24期
关键词
D O I
10.1088/0305-4470/29/24/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the relationship between the effective diffusivity and effective drift of a particle moving in a random medium. The velocity of the particle combines a white noise diffusion process with a local drift term that depends linearly on the gradient of a Gaussian random field with homogeneous statistics. The theoretical analysis is confirmed by numerical simulation. For the purely isotropic case the simulation, which measures the effective drift directly in a constant gradient background field, confirms the result, previously obtained theoretically, that the effective diffusivity and effective drift are renormalized by the same factor from their local values. For this isotropic case we provide an intuitive explanation, based on a spatial average of local drift, for the renormalization of the effective drift parameter relative to its local value. We also investigate situations in which the isotropy is broken by the tensorial relationship of the local drift to the gradient of the random held. We find that the numerical simulation confirms a relatively simple renormalization group calculation for the effective diffusivity and drift tensors.
引用
收藏
页码:7867 / 7879
页数:13
相关论文
共 13 条
  • [1] BOUCHAUD JP, 1990, PHYS REP, V195, P4
  • [2] CRISANTI A, 1988, PHYS REV A, V37, P12
  • [3] ANALYTICAL SOLUTION OF THE OFF-EQUILIBRIUM DYNAMICS OF A LONG-RANGE SPIN-GLASS MODEL
    CUGLIANDOLO, LF
    KURCHAN, J
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 173 - 176
  • [4] PERTURBATION-THEORY FOR EFFECTIVE DIFFUSIVITY IN RANDOM GRADIENT FLOWS
    DEAN, DS
    DRUMMOND, IT
    HORGAN, RR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : 1235 - 1242
  • [5] PERTURBATION SCHEMES FOR FLOW IN RANDOM-MEDIA
    DEAN, DS
    DRUMMOND, IT
    HORGAN, RR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (15): : 5135 - 5144
  • [6] DEAN DS, 1995, J PHYS A, V2, P6013
  • [7] DEAN DS, UNPUB J PHYS A
  • [8] DEAN DS, 1993, THESIS U CAMBRIDGE
  • [9] CLASSICAL DIFFUSION IN STRONG RANDOM-MEDIA
    DEEM, MW
    CHANDLER, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (3-4) : 911 - 927
  • [10] DIFFUSION OF PASSIVE-SCALAR AND MAGNETIC-FIELDS BY HELICAL TURBULENCE
    KRAICHNAN, RH
    [J]. JOURNAL OF FLUID MECHANICS, 1976, 77 (OCT22) : 753 - 768