On generalized Toeplitz and little Hankel operators on Bergman spaces

被引:7
作者
Taskinen, Jari [1 ]
Virtanen, Jani [2 ]
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Univ Reading, Dept Math, POB 220 Whiteknights, Reading RG6 6AX, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
Toeplitz operator; Little Hankel operator; Bergman space; Boundedness; Compactness; SYMBOLS;
D O I
10.1007/s00013-017-1124-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a concrete integral formula for the class of generalized Toeplitz operators in Bergman spaces , , studied in an earlier work by the authors. The result is extended to little Hankel operators. We give an example of an -symbol a such that fails to be bounded in , although is seen to be bounded by using the generalized definition. We also confirm that the generalized definition coincides with the classical one whenever the latter makes sense.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2007, OPERATOR THEORY FUNC
[2]   Toeplitz operators and weighted Bergman kernels [J].
Englis, Miroslav .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (06) :1419-1457
[3]  
Grudsky S, 2003, J OPERAT THEOR, V49, P325
[4]   Bergman-Toeplitz operators: Radial component influence [J].
Grudsky, S ;
Vasilevski, N .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (01) :16-33
[5]  
Luecking DH, 2008, P AM MATH SOC, V136, P1717
[6]   TRACE IDEAL CRITERIA FOR TOEPLITZ-OPERATORS [J].
LUECKING, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 73 (02) :345-368
[7]   Toeplitz operators on Bergman spaces and Hardy multipliers [J].
Lusky, Wolfgang ;
Taskinen, Jari .
STUDIA MATHEMATICA, 2011, 204 (02) :137-154
[8]   Toeplitz operators with locally integrable symbols on Bergman spaces of bounded simply connected domains [J].
Mannersalo, Paula .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (06) :854-874
[9]   TOEPLITZ OPERATORS WITH DISTRIBUTIONAL SYMBOLS ON BERGMAN SPACES [J].
Perala, Antti ;
Taskinen, Jari ;
Virtanen, Jani .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 :505-514
[10]  
Rudin W., 1987, Real and Complex Analysis, V3