Limit theorems for D[0,1]-valued autoregressive processes

被引:3
作者
El Hajj, Layal [1 ]
机构
[1] Univ Paris 06, LSTA, F-75252 Paris 05, France
关键词
LIMIT-THEOREMS; BANACH-SPACE; CONVERGENCE;
D O I
10.1016/j.crma.2011.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note deals with real continuous-time processes which admit a D[0,1]-valued autoregressive representation of order one (ARD(1)). Under some regularity conditions, we establish laws of large numbers, the central limit theorem and the law of the iterated logarithm for ARD(1). (C) 2011 Academie des sciences. Publie par Elsevier Masson SAS.
引用
收藏
页码:821 / 825
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1978, LECT NOTES MATH
[2]  
[Anonymous], 1999, CONVERGE PROBAB MEAS
[3]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[4]  
BOSQ D, 1991, NATO ADV SCI I C-MAT, V335, P509
[5]  
BOSQ D, 1993, CR ACAD SCI I-MATH, V316, P607
[6]  
Bosq D., 2000, LECT NOTES STAT, V149
[7]  
Fernique X., 1994, LIET MAT RINK, V34, P231
[8]   SOME RESULTS ON THE LIL IN BANACH-SPACE WITH APPLICATIONS TO WEIGHTED EMPIRICAL PROCESSES [J].
GOODMAN, V ;
KUELBS, J ;
ZINN, J .
ANNALS OF PROBABILITY, 1981, 9 (05) :713-752
[9]   CENTRAL LIMIT-THEOREMS IN D[0,1] [J].
HAHN, MG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 44 (02) :89-101
[10]   STRONG CONVERGENCE THEOREM FOR BANACH-SPACE VALUED RANDOM-VARIABLES [J].
KUELBS, J .
ANNALS OF PROBABILITY, 1976, 4 (05) :744-771