A facile and fast preparation of robust superhydrophobic brass mesh coated with Cu(OH)2 nanowires by pulse electrodeposition for continuous highly efficient oil/water separation

被引:14
|
作者
Zhang, Yonghui [1 ,2 ]
Liu, Jiangwen [1 ,2 ]
Ouyang, Ligeng [1 ,2 ]
Zhang, Kai [1 ,2 ]
Xie, Guie [3 ]
Jiang, Shuzhen [4 ]
机构
[1] Guangdong Univ Technol, State Key Lab Precis Elect Mfg Technol & Equipmen, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangzhou Key Lab Nontradit Machining & Equipment, Guangzhou 510006, Peoples R China
[3] Guangzhou Med Univ, KingMed Sch Lab Med, Guangzhou 510182, Peoples R China
[4] Lingnan Normal Univ, Sch Mech & Elect Engn, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulse electrodeposition; Wear-resistance; Chemical stability; Oil/water separation; Ultra-high separation flux; COPPER; SURFACE; FABRICATION;
D O I
10.1016/j.colsurfa.2021.127968
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective separation of industrial oily wastewater and oil leak has long been treated as an important link to ensure rapid and harmonious development of economy and society. In this article, a robust superhydrophobic/superlipophilic brass mesh with micro/nano dual-scale structures was successfully fabricated by a fast pulse electrodeposition followed by a two-step simple and nonfluorinated immersion process in alkaline solution of K2S2O8 and 1-Dodecanethiol (NDM) ethanol solution respectively. The as-synthesized novel inorganic membrane not only exhibited an excellent performance for superhydrophobicity (the water contact angle (WCA) of 158 degrees + 1 degrees and the sliding angle (SA) of 2 degrees+ 0.3 degrees) and superoleophilicity (the oil contact angle (OCA) of 0 degrees), but also for anti-corrosion, abrasion resistance and oil/water separation efficiency (up to 99.8%). Especially, it can still maintain high separation efficiency up to 98% after deep abrasion test of 400 cycles, and show no obvious variation for separation efficiency after 50 times reusability. Besides, the prepared mesh possessed an outstanding separation flux capacity both in light and heavy oil/water mixtures, which can reach up to 75 kL.h(-1) m(-2) performed in a self-made gravity self-driven oil-water separation device. By adopting this simple, fast and controllable way, it is expected to save time effectively and may be easily suitable for other conductive metal materials to fabricate new materials for practical continuous oil/water separation.
引用
收藏
页数:12
相关论文
共 45 条
  • [21] Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption
    Deng, Wanshun
    Long, Mengying
    Miao, Xinrui
    Wen, Ni
    Deng, Wenli
    SURFACE & COATINGS TECHNOLOGY, 2017, 325 : 14 - 21
  • [22] Facile preparation of marine carrageenan hydrogel-coated steel mesh with superhydrophilic and underwater superoleophobic performance for highly efficient oil-water separation
    Sun, Wuyang
    Ding, Linghui
    Xu, Peixuan
    Zhu, Baikang
    Ma, Ke Cun
    Chen, Qingguo
    WATER ENVIRONMENT RESEARCH, 2025, 97 (01)
  • [23] A Facile Route to Fabricate Superhydrophobic Cu2O Surface for Efficient Oil-Water Separation
    Lei, Sheng
    Fang, Xinzuo
    Wang, Fajun
    Xue, Mingshan
    Ou, Junfei
    Li, Changquan
    Li, Wen
    COATINGS, 2019, 9 (10)
  • [24] A novel Cu(OH)2 coated filter paper with superhydrophobicity for the efficient separation of water-in-oil emulsions
    Cao, Chenyang
    Cheng, Jiang
    MATERIALS LETTERS, 2018, 217 : 5 - 8
  • [25] Superhydrophobic copper foam modified with hierarchical stearic acid/CuSiO3/Cu(OH)2 nanocomposites for efficient water/oil separation
    Li, Ji
    Wang, Yuan
    Gao, Ruixi
    Zhang, Tian C.
    Yuan, Shaojun
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [26] A novel superhydrophilic-underwater superoleophobic Cu2S coated copper mesh for efficient oil-water separation
    Pi, Pihui
    Hou, Kun
    Zhou, Cailong
    Wen, Xiufang
    Xu, Shouping
    Cheng, Jiang
    Wang, Shuangfeng
    MATERIALS LETTERS, 2016, 182 : 68 - 71
  • [27] Superhydrophobic DTES-SEP/SiO2@PDMS coated sponge and stainless steel mesh for efficient oil and water separation
    Xia, Shuangshuang
    Pang, Yao
    Yu, Zongxue
    Wang, Juan
    Chen, Zhiquan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [28] Facile preparation of UiO-66-NH 2-coated mesh membrane with underwater superoleophobicity for high efficiency oil-water separation
    He, Yongbo
    Liu, Mengqi
    Zhai, Linzhi
    Li, Hongshuang
    Song, Peng
    Zhu, Xiufang
    Tang, Yubin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [29] Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion
    Wang, Jiarou
    Wang, Xiaofang
    Zhao, Song
    Sun, Bin
    Wang, Zhi
    Wang, Jixiao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 235
  • [30] A facile approach for the fabrication of 3D flower-like Cu2S nanostructures on brass mesh with temperature-induced wetting transition for efficient oil-water separation
    Niu, Lei
    Kang, Zhixin
    APPLIED SURFACE SCIENCE, 2017, 422 : 456 - 468