Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents

被引:14
作者
Amaziane, B. [2 ]
Antontsev, S. [3 ]
Pankratov, L. [2 ,4 ]
Piatnitski, A. [1 ,5 ]
机构
[1] RAS, Lebedev Phys Inst, Moscow 1199910, Russia
[2] Univ Pau, Lab Math Appl, CNRS, UMR 5142, F-64000 Pau, France
[3] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
[4] Kharkov Low Temp Phys & Engn Inst, UA-61103 Kharkov, Ukraine
[5] Narvik Univ Coll, N-8505 Narvik, Norway
关键词
Gamma-convergence; homogenization; variable exponent;
D O I
10.1016/j.jmaa.2007.12.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to homogenization and minimization problems for variational functionals in the framework of Sobolev spaces with continuous variable exponents. We assume that the sequence of exponents converges in the uniform metric and that the Lagrangian has a periodic microstructure. Then under natural coerciveness assumptions we prove a Gamma-convergence result and, as a consequence, the convergence of minimizers (solutions to the corresponding Euler equations). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1192 / 1202
页数:11
相关论文
共 19 条