A Review of SPH Techniques for Hydrodynamic Simulations of Ocean Energy Devices

被引:47
作者
Lyu, Hong-Guan [1 ,2 ,3 ]
Sun, Peng-Nan [1 ,2 ,3 ,4 ]
Huang, Xiao-Ting [2 ,3 ]
Zhong, Shi-Yun [2 ,3 ]
Peng, Yu-Xiang [2 ,3 ]
Jiang, Tao [5 ]
Ji, Chun-Ning [1 ]
机构
[1] Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
[2] Sun Yat Sen Univ, Sch Ocean Engn & Technol, Zhuhai 519082, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519080, Peoples R China
[4] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116000, Peoples R China
[5] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
smoothed particle hydrodynamics; ocean energy devices; floating wind turbines; wave energy converters; tidal current turbines; unified particle generator; numerical fluid tanks; particle shifting techniques; tensile instability control; multi-physics SPH simulations; multibody dynamics; fluid-structure interactions; hydroelasticity; multiphase flows; air-entrainment; parallel computing; multi-resolution; open-source SPH packages; SMOOTHED PARTICLE HYDRODYNAMICS; FREE-SURFACE FLOWS; DELTA-PLUS-SPH; OF-THE-ART; CAVITATING TURBULENT-FLOW; POWER CAPTURE PERFORMANCE; LARGE-EDDY SIMULATION; WAVE SURGE CONVERTER; WATER-ENTRY PROBLEMS; NUMERICAL-SIMULATION;
D O I
10.3390/en15020502
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article is dedicated to providing a detailed review concerning the SPH-based hydrodynamic simulations for ocean energy devices (OEDs). Attention is particularly focused on three topics that are tightly related to the concerning field, covering (1) SPH-based numerical fluid tanks, (2) multi-physics SPH techniques towards simulating OEDs, and finally (3) computational efficiency and capacity. In addition, the striking challenges of the SPH method with respect to simulating OEDs are elaborated, and the future prospects of the SPH method for the concerning topics are also provided.
引用
收藏
页数:48
相关论文
共 275 条
[1]   A transport-velocity formulation for smoothed particle hydrodynamics [J].
Adami, S. ;
Hu, X. Y. ;
Adams, N. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 241 :292-307
[2]   A generalized wall boundary condition for smoothed particle hydrodynamics [J].
Adami, S. ;
Hu, X. Y. ;
Adams, N. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) :7057-7075
[3]   Advancements of wave energy converters based on power take off (PTO) systems: A review [J].
Ahamed, Raju ;
McKee, Kristoffer ;
Howard, Ian .
OCEAN ENGINEERING, 2020, 204
[4]   The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine [J].
Ahmadi, Mohammad H. B. ;
Yang, Zhiyin .
RENEWABLE ENERGY, 2020, 151 :1008-1015
[5]   Long-crested wave generation and absorption for SPH-based DualSPHysics model [J].
Altomare, C. ;
Dominguez, J. M. ;
Crespo, A. J. C. ;
Gonzalez-Cao, J. ;
Suzuki, T. ;
Gomez-Gesteira, M. ;
Troch, P. .
COASTAL ENGINEERING, 2017, 127 :37-54
[6]  
Ammari C., 2021, ENERGY BUILT ENV, DOI [10.1016/J.ENBENV.2021.04.002, DOI 10.1016/J.ENBENV.2021.04.002, 10.1016/j.enbenv.2021.04.002]
[7]  
[Anonymous], 1993, Sea Loads on Ships and Offshore Structures
[8]  
[Anonymous], 2003, SMOOTHED PARTICLE HY
[9]   The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique [J].
Antuono, M. ;
Sun, P. N. ;
Marrone, S. ;
Colagrossi, A. .
COMPUTERS & FLUIDS, 2021, 216
[10]   Smoothed particle hydrodynamics method from a large eddy simulation perspective. Generalization to a quasi-Lagrangian model [J].
Antuono, M. ;
Marrone, S. ;
Di Mascio, A. ;
Colagrossi, A. .
PHYSICS OF FLUIDS, 2021, 33 (01)