Chaos synchronization of a new chaotic system via nonlinear control

被引:60
作者
Zhang, Qunjiao [1 ]
Lu, Jun-an [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic stability - Bifurcation (mathematics) - Computer simulation - Lyapunov functions - Nonlinear control systems - Synchronization;
D O I
10.1016/j.chaos.2006.08.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates chaos synchronization of a new chaotic system [Lu J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons & Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 14 条
[1]  
[Anonymous], CHAOS CONTROL
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]  
Chen G., 1998, CHAOS ORDER
[5]   Global chaos synchronization of new chaotic systems via nonlinear control [J].
Chen, Hsien-Keng .
Chaos, Solitons and Fractals, 2005, 23 (04) :1245-1251
[6]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[7]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[8]   Adaptive synchronization of Chua's oscillators [J].
Chua, LO ;
Yang, T ;
Zhong, GQ ;
Wu, CW .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (01) :189-201
[9]  
HUBLER A, 1989, HELV PHYS ACTA, V62, P343
[10]   A new chaotic system and beyond:: The generalized Lorenz-like system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05) :1507-1537