Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion

被引:13
|
作者
Tentori, A. [1 ]
Colaitis, A. [1 ]
Theobald, W. [2 ,3 ]
Casner, A. [1 ]
Raffestin, D. [1 ]
Ruocco, A. [1 ,4 ]
Trela, J. [1 ]
Le Bel, E. [1 ]
Anderson, K. [2 ]
Wei, M. [2 ]
Henderson, B. [2 ]
Peebles, J. [2 ]
Scott, R. [4 ]
Baton, S. [5 ]
Pikuz, S. A. [6 ]
Betti, R. [2 ,3 ,7 ]
Khan, M. [8 ]
Woolsey, N. [8 ]
Zhang, S. [9 ]
Batani, D. [1 ]
机构
[1] Univ Bordeaux, CEA, CNRS, UMR 5107,CELIA,Ctr Lasers Intenses & Applicat, F-33405 Talence, France
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Harwell Oxford, STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[5] Sorbonne Univ, CNRS, UMR 7605,LULI, CEA,Ecole Polytech,Lab lUtilisat Lasers Intenses, F-91128 Palaiseau, France
[6] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[7] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
[8] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[9] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
基金
英国工程与自然科学研究理事会;
关键词
INTENSITY; CODE;
D O I
10.1063/5.0059651
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on planar target experiments conducted on the OMEGA-EP laser facility performed in the context of the shock ignition (SI) approach to inertial confinement fusion. The experiment aimed at characterizing the propagation of strong shock in matter and the generation of hot electrons (HEs), with laser parameters relevant to SI (1-ns UV laser beams with I similar to 10(16) W/cm(2)). Time-resolved radiographs of the propagating shock front were performed in order to study the hydrodynamic evolution. The hot-electron source was characterized in terms of Maxwellian temperature, T-h, and laser to hot-electron energy conversion efficiency ? using data from different x-ray spectrometers. The post-processing of these data gives a range of the possible values for T-h and ? [i.e., T h [ keV ] (sic)& nbsp;(20, 50) and ? (sic)& nbsp; (2%, 13%)]. These values are used as input in hydrodynamic simulations to reproduce the results obtained in radiographs, thus constraining the range for the HE measurements. According to this procedure, we found that the laser converts similar to 10% +/-& nbsp;4% of energy into hot electrons with T-h = 27 +/-& nbsp;8 keV. The paper shows how the coupling of different diagnostics and numerical tools is required to sufficiently constrain the problem, solving the large ambiguity coming from the post-processing of spectrometers data. The effect of the hot electrons on the shock dynamics is then discussed, showing an increase in the pressure around the shock front. The low temperature found in this experiment without pre-compression laser pulses could be advantageous for the SI scheme, but the high conversion efficiency may lead to an increase in the shell adiabat, with detrimental effects on the implosion.
引用
收藏
页数:16
相关论文
共 31 条
  • [1] Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion
    Batani, D.
    Antonelli, L.
    Barbato, F.
    Boutoux, G.
    Colaitis, A.
    Feugeas, J. -L.
    Folpini, G.
    Mancelli, D.
    Nicolai, Ph.
    Santos, J.
    Trela, J.
    Tikhonchuk, V.
    Badziak, J.
    Chodukowski, T.
    Jakubowska, K.
    Kalinowska, Z.
    Pisarczyk, T.
    Rosinski, M.
    Sawicka, M.
    Baffigi, F.
    Cristoforetti, G.
    D'Amato, F.
    Koester, P.
    Gizzi, L. A.
    Viciani, S.
    Atzeni, S.
    Schiavi, A.
    Skoric, M.
    Gus'kov, S.
    Honrubia, J.
    Limpouch, J.
    Klimo, O.
    Skala, J.
    Gu, Y. J.
    Krousky, E.
    Renner, O.
    Smid, M.
    Weber, S.
    Dudzak, R.
    Krus, M.
    Ullschmied, J.
    NUCLEAR FUSION, 2019, 59 (03)
  • [2] Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion
    Weber, S.
    Riconda, C.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2015, 3
  • [3] Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion
    S.Weber
    C.Riconda
    HighPowerLaserScienceandEngineering, 2015, 3 (01) : 51 - 63
  • [4] Electron Shock Ignition of Inertial Fusion Targets
    Shang, W. L.
    Betti, R.
    Hu, S. X.
    Woo, K.
    Hao, L.
    Ren, C.
    Christopherson, A. R.
    Bose, A.
    Theobald, W.
    PHYSICAL REVIEW LETTERS, 2017, 119 (19)
  • [5] Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
    Perkins, L. J.
    Betti, R.
    LaFortune, K. N.
    Williams, W. H.
    PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [6] Progress in the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Casner, A.
    Nora, R.
    Ribeyre, X.
    Lafon, M.
    Anderson, K. S.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Frenje, J. A.
    Glebov, V. Yu.
    Gotchev, O. V.
    Hohenberger, M.
    Hu, S. X.
    Marshall, F. J.
    McCrory, R. L.
    Meyerhofer, D. D.
    Perkins, L. J.
    Sangster, T. C.
    Schurtz, G.
    Seka, W.
    Smalyuk, V. A.
    Stoeckl, C.
    Yaakobi, B.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [7] Shock-ignition effect in indirect-drive inertial confinement fusion approach
    Gus'kov, S. Yu.
    Vergunova, G. A.
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [8] Hot-electron deposition and implosion mechanisms within electron shock ignition
    尚万里
    车兴森
    孙奥
    杜华冰
    杨国洪
    韦敏习
    侯立飞
    杨轶濛
    张文海
    涂绍勇
    王峰
    何海恩
    杨家敏
    江少恩
    张保汉
    Chinese Physics B, 2020, (10) : 411 - 419
  • [9] Interaction physics for the shock ignition scheme of inertial confinement fusion targets
    Depierreux, S.
    Goyon, C.
    Lewis, K.
    Bandulet, H.
    Michel, D. T.
    Loisel, G.
    Yahia, V.
    Tassin, V.
    Stenz, C.
    Borisenko, N. G.
    Nazarov, W.
    Limpouch, J.
    Masson-Laborde, P. E.
    Loiseau, P.
    Casanova, M.
    Nicolai, Ph
    Hueller, S.
    Pesme, D.
    Riconda, C.
    Tikhonchuk, V. T.
    Labaune, C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [10] Initial experiments on the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Betti, R.
    Stoeckl, C.
    Anderson, K. S.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Marshall, F. J.
    Maywar, D. N.
    McCrory, R. L.
    Meyerhofer, D. D.
    Radha, P. B.
    Sangster, T. C.
    Seka, W.
    Shvarts, D.
    Smalyuk, V. A.
    Solodov, A. A.
    Yaakobi, B.
    Zhou, C. D.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Perkins, L. J.
    PHYSICS OF PLASMAS, 2008, 15 (05)