SHARP GAUTSCHI INEQUALITY FOR PARAMETER 0 < p < 1 WITH APPLICATIONS

被引:49
作者
Yang, Zhen-Hang [1 ]
Zhang, Wen [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2017年 / 20卷 / 04期
基金
中国国家自然科学基金;
关键词
Incomplete gamma function; gamma function; psi function; INCOMPLETE GAMMA-FUNCTION; UNIFORM ASYMPTOTIC-EXPANSION; FUNCTIONAL INEQUALITIES; BOUNDS; MONOTONICITY; ERROR; INTEGRALS; FORMULAS;
D O I
10.7153/mia-2017-20-71
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article, we present the best possible parameters a,b on the interval ( 0,8) such that the Gautschi double inequality [(x(p) + a)(1/p) - x]/a < e(xp) integral(8)(x) e(-tp) dt < [(x(p) + b)(1/p) - x]/b holds for all x > 0 and p is an element of(0,1). As applications, we find new bounds for the incomplete gamma function Gamma(a, x) = integral(8)(x) t(a-1) e(-t) dt.
引用
收藏
页码:1107 / 1120
页数:14
相关论文
共 45 条
  • [1] On some inequalities for the incomplete gamma function
    Alzer, H
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 771 - 778
  • [2] Functional inequalities for the incomplete gamma function
    Alzer, Horst
    Baricz, Arpad
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 167 - 178
  • [3] Anderson GD, 1997, CONFORMAL INVARINANT
  • [4] [Anonymous], 1923, Elektrische Durchbruchfeldstarke von Gasen
  • [5] [Anonymous], MEM FAC ENG KYUSHU I
  • [6] [Anonymous], ARXIV14096408MATHCA
  • [7] [Anonymous], 1955, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.
  • [8] UNIFORM BOUNDS FOR THE COMPLEMENTARY INCOMPLETE GAMMA FUNCTION
    Borwein, Jonathan M.
    Chan, O-Yeat
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (01): : 115 - 121
  • [9] THE GEOMETRIC CONVEXITY OF A FUNCTION INVOLVING GAMMA FUNCTION WITH APPLICATIONS
    Chu, Yuming
    Zhang, Xiaoming
    Zhang, Zhihua
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (03): : 373 - 383
  • [10] An inequality for the product of two integrals relating to the incomplete gamma function
    Elbert, A
    Laforgia, A
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (01) : 39 - 51