Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis

被引:36
|
作者
Chandrasekaran, Murugesan [1 ,5 ]
Kim, Kiyoon [1 ]
Krishnamoorthy, Ramasamy [1 ,6 ,7 ]
Walitang, Denver [1 ]
Sundaram, Subbiah [1 ]
Joe, Manoharan M. [1 ,2 ]
Selvakumar, Gopal [1 ]
Hu, Shuijin [3 ]
Oh, Sang-Hyon [4 ]
Sa, Tongmin [1 ]
机构
[1] Chungbuk Natl Univ, Dept Environm & Biol Chem, Cheongju, South Korea
[2] Vels Univ, Sch Life Sci, Dept Microbiol, Madras, Tamil Nadu, India
[3] North Carolina State Univ, Dept Plant Pathol, Raleigh, NC USA
[4] North Carolina Agr & Tech State Univ, Dept Anim Sci, Greensboro, NC USA
[5] Konkuk Univ, Dept Bioresource & Food Sci, Seoul, South Korea
[6] Tamil Nadu Agr Univ, Dept Agr Microbiol, Coll Agr, Madurai, Tamil Nadu, India
[7] Tamil Nadu Agr Univ, Res Inst, Madurai, Tamil Nadu, India
基金
新加坡国家研究基金会;
关键词
arbuscular mycorrhizal fungi; salinity stress; meta-analysis; C-3 and C-4 plants; nutrient uptake; plant biomass; SALT STRESS; ARBUSCULAR MYCORRHIZA; PHOTOSYNTHETIC PATHWAY; GLOMUS-INTRARADICES; RESPONSE RATIOS; FUNGI; GROWTH; ROOT; TOLERANCE; MAIZE;
D O I
10.3389/fmicb.2016.01246
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A wide range of C-3 and O-4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in Cu and O-4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between Cu and C-4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (Co vs. O-4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C-3 and O-4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although Co and C-4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C-3 plants showed significant effects for mycorrhizal inoculation over O-4 plants. Among the plant types, C4 annual and perennial plants, O-4 herbs and O-4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C-3 plants whereas Funneliformis mosseae had a positive effect on O-4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na) uptake in both Co and O-4 plants. This influence, owing to mycorrhizal inoculation, was significantly higher in K uptake in O-4 plants. For our analysis, we concluded that AMF-inoculated O-4 plants showed more competitive K+ ions uptake than Co plants. Therefore, maintenance of high cytosolic K+/Na+ ratio is a key feature of plant salt tolerance. Studies on the detailed mechanism for the selective transport of K in C-3 and C-4 mycorrhizal plants under salt stress is lacking, and this needs to be explored.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Antioxidant defense in the leaves of C3 and C4 plants under salinity stress
    Stepien, P
    Klobus, G
    PHYSIOLOGIA PLANTARUM, 2005, 125 (01) : 31 - 40
  • [2] ANTIOXIDANT DEFENCE IN C3 AND C4 PLANTS UNDER SALINITY
    Stepien, P.
    Klobus, G.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 225 - 225
  • [3] Comparison of Transcriptional Response of C3 and C4 Plants to Drought Stress Using Meta-Analysis and Systems Biology Approach
    Tahmasebi, Ahmad
    Niazi, Ali
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [4] What can enzymes of C4 photosynthesis do for C3 plants under stress?
    Doubnerova, Veronika
    Ryslava, Helena
    PLANT SCIENCE, 2011, 180 (04) : 575 - 583
  • [5] Oxygen requirement and inhibition of C4 photosynthesis -: An analysis of C4 plants deficient in the C3 and C4 cycles
    Maroco, JP
    Ku, MSB
    Lea, PJ
    Dever, LV
    Leegood, RC
    Furbank, RT
    Edwards, GE
    PLANT PHYSIOLOGY, 1998, 116 (02) : 823 - 832
  • [6] THE REGULATION OF PHOSPHORIBULOKINASE IN C3 AND C4 PLANTS
    Ruffer-Turner, M. E.
    Bradbeer, J. W.
    PLANT PHYSIOLOGY, 1984, 75 : 52 - 52
  • [7] PEP CARBOXYLASES IN C3 AND C4 PLANTS
    TING, IP
    OSMOND, CB
    PLANT PHYSIOLOGY, 1972, 49 : 58 - &
  • [8] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [9] Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress
    Zhu, J
    Meinzer, FC
    AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1999, 26 (01): : 79 - 86
  • [10] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Su, Peixi
    Yan, Qiaodi
    Xie, Tingting
    Zhou, Zijuan
    Gao, Song
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (06) : 2057 - 2068