An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter

被引:5
作者
Chiba, Kohei [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka, Japan
关键词
Fractional Brownian motion; Drift parameter estimation; Consistency; Asymptotic normality; Moment convergence;
D O I
10.1007/s11203-020-09214-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let us consider a stochastic differential equation driven by a fractional Brownian motion with Hurst parameter 1/4<H<1/2. We are interested in estimating the drift parameter from the completely observed data. We propose an M-estimator for the drift parameter. Under some assumptions on the drift coefficient, our estimator has consistency, asymptotic normality and moment convergence property.
引用
收藏
页码:319 / 353
页数:35
相关论文
共 29 条
  • [1] SHARP LARGE DEVIATIONS FOR THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS
    Bercu, B.
    Coutin, L.
    Savy, N.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) : 575 - 610
  • [2] GAUSSIAN-TYPE LOWER BOUNDS FOR THE DENSITY OF SOLUTIONS OF SDES DRIVEN BY FRACTIONAL BROWNIAN MOTIONS
    Besalu, M.
    Kohatsu-Higa, A.
    Tindel, S.
    [J]. ANNALS OF PROBABILITY, 2016, 44 (01) : 399 - 443
  • [3] Brouste A, 2010, STAT INFERENCE STOCH, V13, P1, DOI [DOI 10.1007/S11203-009-9035-X, 10.1007/s11203-009-9035-x, DOI 10.1007/s11203-009-9035-x]
  • [4] Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise
    Chen Xia
    Hu Yaozhong
    David, Nualart
    Samy, Tindel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22 : 1 - 38
  • [5] Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2)
    Cheridito, P
    Nualart, D
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06): : 1049 - 1081
  • [6] Cheridito P., 2003, ELECTRON J PROBAB, V8, P14, DOI DOI 10.1214/EJP.V8-125
  • [7] Chiba K, 2018, ARXIV180404108
  • [8] Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion
    Garrido-Atienza, Maria J.
    Kloeden, Peter E.
    Neuenkirch, Andreas
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02) : 151 - 172
  • [9] Random attractors for a class of stochastic partial differential equations driven by general additive noise
    Gess, Benjamin
    Liu, Wei
    Roeckner, Michael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 1225 - 1253
  • [10] Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion
    Hu, Yaozhong
    Nualart, David
    Zhou, Hongjuan
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (08) : 1067 - 1091