Compression of uniform embeddings into Hilbert space

被引:7
作者
Brodskiy, N. [1 ]
Sonkin, D. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
uniform embedding; Hilbert space compression; hyperbolic group; CAT(0) cubical complex;
D O I
10.1016/j.topol.2007.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If one tries to embed a metric space uniformly in Hilbert space, how close to quasi-isometric could the embedding be? We answer this question for finite dimensional CAT(0) cube complexes and for hyperbolic groups. In particular, we show that the Hilbert space compression of any hyperbolic group is 1. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 732
页数:8
相关论文
共 17 条
[1]  
ARZHANTSEVA GN, MATHGR0411605
[2]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[3]   ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :46-52
[4]  
Bridson M.R., 1999, METRIC SPACES NONPOS
[5]   Hilbert space compression and exactness of discrete groups [J].
Campbell, S ;
Niblo, GA .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (02) :292-305
[6]   Uniform embeddability and exactness of free products [J].
Chen, XM ;
Dadarlat, M ;
Guentner, E ;
Yu, GL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :168-179
[7]   Constructions preserving Hilbert space uniform embeddability of discrete groups [J].
Dadarlat, M ;
Guentner, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) :3253-3275
[8]  
DADARLAT M, MATHGR0501495
[9]  
DRANISHNIKOV A, MATHGR0402398
[10]  
Gromov M., 1993, LONDON MATH SOC LECT, pvii+295