Consistent Anomaly Detection and Localization of Multivariate Time Series via Cross-Correlation Graph-Based EncoderDecoder GAN

被引:21
|
作者
Liang, Haoran [1 ,2 ]
Song, Lei [1 ]
Du, Junrong [1 ,2 ]
Li, Xuzhi [1 ]
Guo, Lili [1 ,3 ]
机构
[1] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
关键词
Time series analysis; Anomaly detection; Generators; Feature extraction; Generative adversarial networks; Decoding; Training; Anomaly detection and location; cross correlation graph; encoder-decoder GAN; multivariate time series; NETWORK;
D O I
10.1109/TIM.2021.3139696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multivariate time series is widely derived from industrial facilities, such as power plants, manufacturing machines, spacecraft, digital devices, and so on, and anomaly detection and location is of great importance to industrial preventive maintenance. However, anomalies in multivariate time series always result from their unusual change of temporal or correlative features, and it is challenging to capture these complex characteristics. Besides, achieving consistent anomaly detection and location performance is also a tricky issue. In this article, a novel anomaly detection and location framework that combines generative adversarial networks and autoencoder is proposed to capture time dependent and correlation features of multivariate time series with the need of anomalous sequences. First, multitime scale correlation computation is utilized to encode multivariate time series into multiple cross correlation graphs, which can be fed into the proposed deep architecture for extracting more distinguishable features. On this basis, a robust cost function with multiple loss issues is designed, and reconstruction matrix deviation from original space of encoder & x2013;encoder structure is utilized to detect and locate abnormal time series, ensuring the consistency of detection and location tasks and the framework reliability. Extensive experiments on five industrial datasets are conducted to indicate our model is a generic and excellent framework for anomaly detection and location of multivariate time series.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
    Guan, Siwei
    Zhao, Binjie
    Dong, Zhekang
    Gao, Mingyu
    He, Zhiwei
    ENTROPY, 2022, 24 (06)
  • [42] Multivariate Time Series Anomaly Detection via Low-Rank and Sparse Decomposition
    Belay, Mohammed Ayalew
    Rasheed, Adil
    Rossi, Pierluigi Salvo
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 34942 - 34952
  • [43] Time Series Anomaly Detection Based on GAN
    Sun, Yong
    Yu, Wenbo
    Chen, Yuting
    Kadam, Aishwarya
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 375 - 382
  • [44] Multivariate Time Series Anomaly Detection Method Based on mTranAD
    Zhang, Chuanlei
    Li, Yicong
    Li, Jie
    Li, Guixi
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 52 - 63
  • [45] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [46] Multiscale adaptive multifractal cross-correlation analysis of multivariate time series
    Wang, Xinyao
    Jiang, Huanwen
    Han, Guosheng
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [47] Enhanced graph diffusion learning with dynamic transformer for anomaly detection in multivariate time series
    Gao, Rong
    Wang, Jiming
    Yu, Yonghong
    Wu, Jia
    Zhang, Li
    NEUROCOMPUTING, 2025, 619
  • [48] Multiview Graph Contrastive Learning for Multivariate Time-Series Anomaly Detection in IoT
    Qin, Shuxin
    Chen, Lin
    Luo, Yongcan
    Tao, Gaofeng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 22401 - 22414
  • [49] Improving Deep Learning Based Anomaly Detection on Multivariate Time Series Through Separated Anomaly Scoring
    Lundstrom, Adam
    O'Nils, Mattias
    Qureshi, Faisal Z.
    Jantsch, Axel
    IEEE ACCESS, 2022, 10 : 108194 - 108204
  • [50] Graph Attention Network and Informer for Multivariate Time Series Anomaly Detection
    Zhao, Mengmeng
    Peng, Haipeng
    Li, Lixiang
    Ren, Yeqing
    SENSORS, 2024, 24 (05)