Topological phases, Majorana modes and quench dynamics in a spin ladder system

被引:113
作者
DeGottardi, Wade [1 ]
Sen, Diptiman [2 ]
Vishveshwara, Smitha [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
ONE-DIMENSIONAL FERMIONS; NON-ABELIAN STATISTICS; COSMOLOGICAL EXPERIMENTS; XY-MODEL; QUANTUM; TRANSITION; INCOMMENSURATION; MECHANICS; NUMBER; ANYONS;
D O I
10.1088/1367-2630/13/6/065028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the salient features of the 'Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.
引用
收藏
页数:22
相关论文
共 80 条
[1]   Quantized Conductance at the Majorana Phase Transition in a Disordered Superconducting Wire [J].
Akhmerov, A. R. ;
Dahlhaus, J. P. ;
Hassler, F. ;
Wimmer, M. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[2]   Non-Abelian statistics and topological quantum information processing in 1D wire networks [J].
Alicea, Jason ;
Oreg, Yuval ;
Refael, Gil ;
von Oppen, Felix ;
Fisher, Matthew P. A. .
NATURE PHYSICS, 2011, 7 (05) :412-417
[3]   Optimal nonlinear passage through a quantum critical point [J].
Barankov, Roman ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[4]   STATISTICAL MECHANICS OF XY MODEL .1 [J].
BAROUCH, E ;
MCCOY, BM ;
DRESDEN, M .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (03) :1075-+
[5]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[6]   Exact results for spin dynamics and fractionalization in the Kitaev model [J].
Baskaran, G. ;
Mandal, Saptarshi ;
Shankar, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (24)
[7]   Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point [J].
Bermudez, A. ;
Amico, L. ;
Martin-Delgado, M. A. .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Topology-Induced Anomalous Defect Production by Crossing a Quantum Critical Point [J].
Bermudez, A. ;
Patane, D. ;
Amico, L. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[9]   Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field [J].
Bunder, JE ;
McKenzie, RH .
PHYSICAL REVIEW B, 1999, 60 (01) :344-358
[10]   Exact mapping between classical and topological orders in two-dimensional spin systems [J].
Chen, Han-Dong ;
Hu, Jiangping .
PHYSICAL REVIEW B, 2007, 76 (19)