Bernstein-Sato polynomials and spectral numbers

被引:5
作者
Guimaraes, Andrea G. [1 ]
Hefez, Abramo [2 ]
机构
[1] Univ Estadual Rio Janeiro, IME, BR-20550013 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Math Inst, BR-24020 Niteroi, RJ, Brazil
关键词
Bernstein polynomial; spectral numbers; Gauss-Manin connection and Brieskorn lattice;
D O I
10.5802/aif.2322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a mu-constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.
引用
收藏
页码:2031 / 2040
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1973, FUNCTIONAL ANAL ITS
[2]   ALGORITHM FOR COMPUTING THE BERNSTEIN POLYNOMIAL - NON-DEGENERATED CASE [J].
BRIANCON, J ;
GRANGER, M ;
MAISONOBE, P ;
MINICONI, M .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) :553-610
[3]   MONODROMY OF ISOLATED HYPERSURFACE SINGULARITIES [J].
BRIESKOR.E .
MANUSCRIPTA MATHEMATICA, 1970, 2 (02) :103-&
[4]  
CASSOUNOGUES P, 1987, COMPOS MATH, V63, P291
[5]   BERNSTEIN POLYNOMIAL ROOTS [J].
CASSOUNOGUES, P .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (04) :1-30
[6]   Bernstein polynomial and Tjurina number [J].
Hertling, C ;
Stahlke, C .
GEOMETRIAE DEDICATA, 1999, 75 (02) :137-176
[7]   B-FUNCTIONS AND HOLONOMIC SYSTEMS - RATIONALITY OF ROOTS OF B-FUNCTIONS [J].
KASHIWARA, M .
INVENTIONES MATHEMATICAE, 1976, 38 (01) :33-53
[8]  
Maigrange B., 1974, ANN SCI ECOLE NORM S, V7, P405
[9]  
Malgrange B., 1975, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, V459, P98
[10]   ON THE STRUCTURE OF BRIESKORN LATTICE [J].
SAITO, M .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (01) :27-72