Speed control of a magnetic accelerator using adaptive control techniques

被引:3
作者
Blanco Rico, Javier [1 ]
Al-Hadithi, Basil Mohammed [2 ,3 ]
Gonzalez Herranz, Roberto [1 ]
机构
[1] Univ Politecn Madrid, Sch Ind Design & Engn, Madrid, Spain
[2] Univ Politecn Madrid, Ctr Automat & Robot UPM CSIC, Intelligent Control Grp, Madrid, Spain
[3] Univ Politecn Madrid, Sch Ind Design & Engn, Madrid, Spain
关键词
Adaptation models; Velocity control; Pulse width modulation; Adaptive control; Regulators; Robot sensing systems; Output feedback; Adaptive algorithms; Automatic control; Control engineering; Digital control; Negative feedback; Nonlinear dynamical systems; Programmable control; SELF-TUNING REGULATOR; SYSTEM;
D O I
10.1109/TLA.2022.9667148
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced control algorithms are of great interest in control engineering, they make it possible to guarantee the correct operation of complex systems and improve their performance under adverse operating conditions, thanks to negative output feedback. In this work, two adaptive control algorithms are shown: controllers based on Gain Scheduling and Direct Self-Tuning Regulators, using them to control the velocity of an electromagnetic accelerator and comparing their results with those obtained by a classic PID regulator when the system is operated under adverse operating conditions (setpoint changes, load changes and noise resistance). lt shows how this type of regulators can exceed the performance of classical control algorithms, making them a very attractive alternative for digital systems based on microcontrollers, whose high processing capacity allows them to be easily implemented in a wide variety of processes, including nonlinear dynamical systems.
引用
收藏
页码:488 / 495
页数:8
相关论文
共 34 条
  • [1] Ankushe RS, 2016, PROCEEDINGS OF THE 2016 IEEE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL & ELECTRONICS, INFORMATION, COMMUNICATION & BIO INFORMATICS (IEEE AEEICB-2016), P331, DOI 10.1109/AEEICB.2016.7538303
  • [2] Astrom K.J., 2013, ADAPTIVE CONTROL
  • [3] Banyasz Cs., 1982, IFAC P VOLUMES, V15, P1395, DOI [10.1016/S1474-6670(17)63193-8, DOI 10.1016/S1474-6670(17)63193-8]
  • [4] Fuzzy Gain Scheduled Smith Predictor for Temperature Control in an Industrial Steel Slab Reheating Furnace
    Benitez, I. O.
    Rivas, R.
    Feliu, V.
    Sanchez, L. P.
    Sanchez, L. A.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (11) : 4439 - 4447
  • [5] MAGLEV projects technology aspects and choices
    Cassat, A
    Jufer, M
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2002, 12 (01) : 915 - 925
  • [6] Automatic Control on Batch and Continuous Distillation Columns
    Diaz, S.
    Perez-Correa, J.
    Fernandez-Fernandez, M.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (09) : 2418 - 2426
  • [7] Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study
    Ebrahimi, Ali
    Urias, Mueller G.
    Patel, Niravkumar
    Taylor, Russell H.
    Gehlbach, Peter
    Iordachita, Iulian
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (11) : 3356 - 3365
  • [8] Garcia A. Iborra, 2006, LATIN AM T IEEE, V4, P332, DOI DOI 10.1109/TLA.2006.4472132
  • [9] Navigation System With Adaptive Disturbances Compensation for an Autonomous Underwater Vehicle
    Garcia, Delvis
    Pena, Jorge
    Valeriano, Yunier
    Hernandez, Luis
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (10) : 1741 - 1751
  • [10] Grigorov I., 2020, 2020 INT C AUT INF I, P1, DOI [10.1109/ICAI50593.2020.9311296, DOI 10.1109/ICAI50593.2020.9311296]