Second Hankel Determinant for Bi-univalent Functions Associated with q-differential Operator

被引:1
作者
Shrigan, Mallikarjun G. [1 ]
机构
[1] Bhivarabai Sawant Inst Technol & Res, Pune, Maharashtra, India
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2022年 / 15卷 / 05期
关键词
Hankel determinant; bi-univalent functions; q-differential operator; Fekete-Szego functional; SUBCLASS;
D O I
10.17516/1997-1397-2022-15-5-663-671
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this paper is to obtain an upper bound to the second Hankel determinant denoted by H-2(2) for the class S-q(*)(alpha) of bi-univalent functions using q-differential operator.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 27 条
[1]  
Altinkaya S, 2016, TWMS J PURE APPL MAT, V7, P98
[2]   POWER SERIES WITH INTEGRAL COEFFICIENTS [J].
CANTOR, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) :362-&
[3]  
Dienes P., 1957, The Taylor series. An introduction to the theory of func- tions of a complex variable
[4]  
Duren P. L., 1983, Univalent functions, V259
[5]  
Grenander U., 1958, Toeplitz forms and their applications
[6]  
Ismail M.E.H., 1990, Complex Var, V14, P77, DOI DOI 10.1080/17476939008814407
[7]  
Jackson FH., 1910, Quart. J. Pure Appl. Math, V41, P193, DOI DOI 10.1017/S0080456800002751
[8]  
Janteng A., 2007, Int. J. Math. Anal, V1, P619
[9]  
Kanas S., 2000, Rev. Roum. Math. Pures Appl., V45, P647
[10]   A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS [J].
KEOGH, FR ;
MERKES, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) :8-&