Uniqueness in Caldern's Problem for Conductivities with Unbounded Gradient

被引:48
作者
Haberman, Boaz [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ELLIPTIC-EQUATIONS; LIPSCHITZ CONDUCTIVITIES; BOUNDARY MEASUREMENTS; GLOBAL UNIQUENESS; INVERSE PROBLEMS; CONTINUATION; THEOREM; COEFFICIENTS; OPERATORS; SPACES;
D O I
10.1007/s00220-015-2460-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove uniqueness in the inverse conductivity problem for uniformly elliptic conductivities in , where is Lipschitz, , and s and p are such that . In particular, we obtain uniqueness for conductivities in (n = 3, 4). This improves on the result of the author and Tataru, who assumed that the conductivity is Lipschitz.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 33 条
[31]   The X(0)(5) spaces and unique continuation for solutions to the semilinear wave equation [J].
Tataru, D .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (5-6) :841-887
[32]   RESTRICTION THEOREM FOR FOURIER-TRANSFORM [J].
TOMAS, PA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (02) :477-478
[33]  
WOLFF T. H., 1992, GEOM FUNCT ANAL, V2, P225