Uniqueness in Caldern's Problem for Conductivities with Unbounded Gradient

被引:48
作者
Haberman, Boaz [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ELLIPTIC-EQUATIONS; LIPSCHITZ CONDUCTIVITIES; BOUNDARY MEASUREMENTS; GLOBAL UNIQUENESS; INVERSE PROBLEMS; CONTINUATION; THEOREM; COEFFICIENTS; OPERATORS; SPACES;
D O I
10.1007/s00220-015-2460-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove uniqueness in the inverse conductivity problem for uniformly elliptic conductivities in , where is Lipschitz, , and s and p are such that . In particular, we obtain uniqueness for conductivities in (n = 3, 4). This improves on the result of the author and Tataru, who assumed that the conductivity is Lipschitz.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 33 条
[1]  
Alberto C., 1980, COMPUT APPL MATH, V25, P133
[2]   SINGULAR SOLUTIONS OF ELLIPTIC-EQUATIONS AND THE DETERMINATION OF CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
ALESSANDRINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :252-272
[3]  
Alessandrini G., 1992, QUADERNI MATH, V276
[4]  
Aronszajn N., 1962, Arkiv for Matematik, V4, P1962
[5]  
Astala K., 2011, ARXIV11092749MATHPH
[6]  
Bourgain J., 1993, Geom. Funct. Anal., P107
[7]  
Brown B. H., 2003, Journal of Medical Engineering & Technology, V27, P97, DOI 10.1080/0309190021000059687
[8]  
Brown R.M., 2013, Journal of Inverse and Ill-posed Problems, V9, P567
[9]   Global uniqueness in the impedance-imaging problem for less regular conductivities [J].
Brown, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1049-1056
[10]  
Caro P., 2014, ARXIV14118001MATH