On quasi-invariant elements of a lattice

被引:0
|
作者
Feng, H [1 ]
Wang, J [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a lattice and G a group acting on L. An element x of L is said to be quasi-G-invariant if for every g is an element of G either x less than or equal to g(x) or x covers x boolean AND g(x). We prove that if L is an upper semimodular lattice and x is an element of L is quasi-G-invariant then there is a g is an element of G such that I covers x boolean AND g(x) and x boolean AND g(x) is G-invariant, or there is a g is an element of G such that x boolean OR g(x) covers x and x boolean OR g(x) is G-invariant.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 50 条
  • [1] On quasi-invariant elements of a lattice
    Feng H.
    Wang J.
    algebra universalis, 1998, 40 (4) : 447 - 451
  • [2] GENERALIZED FIBONACCI LATTICE - DYNAMIC TRACE MAP, INVARIANT AND QUASI-INVARIANT
    INOUE, M
    TAKEMORI, T
    MIYAZAKI, H
    SOLID STATE COMMUNICATIONS, 1991, 77 (10) : 751 - 755
  • [3] On Quasi-Invariant Control
    Neimark, Yu. I.
    DIFFERENTIAL EQUATIONS, 2007, 43 (11) : 1524 - 1528
  • [4] QUASI-INVARIANT MEASURE
    KOSHI, S
    TAKAHASH.Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (07): : 428 - 429
  • [5] ON QUASI-INVARIANT CURVES
    Perez-Marco, Ricardo
    ASTERISQUE, 2020, (416) : 181 - 191
  • [6] On quasi-invariant control
    Yu. I. Neimark
    Differential Equations, 2007, 43 : 1524 - 1528
  • [7] Quasi-invariant states
    Accardi, Luigi
    Dhahri, Ameur
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024,
  • [8] ON THE ERGODIC QUASI-INVARIANT MEASURES
    YANG, Y
    SCIENTIA SINICA, 1981, 24 (06): : 739 - 748
  • [9] CONSTRUCTION OF QUASI-INVARIANT MEASURES
    KATZNELSON, Y
    WEISS, B
    ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (01) : 1 - +
  • [10] QUASI-INVARIANT CYLINDRICAL MEASURES
    LINDE, W
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (02): : 91 - 99