Mg2Si-Based Materials for the Thermoelectric Energy Conversion

被引:25
作者
Cheng, X. [1 ]
Farahi, N. [1 ]
Kleinke, H. [1 ]
机构
[1] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LOW-THERMAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; PHASE SEGREGATION; INTERSTITIAL MG; HIGH FIGURE; PERFORMANCE; EFFICIENCY; MG2SI; MERIT; BI;
D O I
10.1007/s11837-016-2060-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric materials are capable of converting a temperature gradient into electricity (thermoelectric power generation) and vice versa (Peltier cooling). The thermoelectric power generation has been used for decades in spacecraft, where radioactive decay provides the heat source. Additional applications under consideration are based on the utilization of waste heat, for example in automotives or the manufacturing industries. Commercial thermoelectric materials are normally based on Bi2Te3, PbTe, or possibly in the future on the so-called filled skutterudites, such as YbxCo4Sb12. The downside of these materials is that some of their major constituent elements are toxic, namely tellurium, lead, and antimony, and in part rare and expensive (ytterbium, tellurium). Mg2Si on the other hand is composed of abundant, environmentally benign elements, and thus offers a huge advantage for commercial applications. Here, we provide a review of Mg2Si-based materials for thermoelectric energy conversion, discussing how competitive these materials have become in comparison to the above-mentioned more traditional materials.
引用
收藏
页码:2680 / 2687
页数:8
相关论文
共 87 条
[1]   Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m [J].
Androulakis, John ;
Hsu, Kuei Fang ;
Pcionek, Robert ;
Kong, Huijun ;
Uher, Ctirad ;
DAngelo, Jonathan J. ;
Downey, Adam ;
Hogan, Tim ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2006, 18 (09) :1170-+
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Microwaved assisted fast synthesis of n and p-doped Mg2Si [J].
Berthebaud, David ;
Gascoin, Franck .
JOURNAL OF SOLID STATE CHEMISTRY, 2013, 202 :61-64
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide [J].
Bux, Sabah K. ;
Yeung, Michael T. ;
Toberer, Eric S. ;
Snyder, G. Jeffrey ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12259-12266
[7]   Preparation and thermoelectric properties of semiconducting Zn4Sb3 [J].
Caillat, T ;
Fleurial, JP ;
Borshchevsky, A .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (07) :1119-1125
[8]   Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles [J].
Cederkrantz, D. ;
Farahi, N. ;
Borup, K. A. ;
Iversen, B. B. ;
Nygren, M. ;
Palmqvist, A. E. C. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
[9]   Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1-xSnx (0.1 ≤ x ≤ 0.8) solid solutions by flux method [J].
Chen, Luxin ;
Jiang, Guangyu ;
Chen, Yi ;
Du, Zhengliang ;
Zhao, Xinbing ;
Zhu, Tiejun ;
He, Jian ;
Tritt, Terry M. .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (24) :3038-3043
[10]   Development of a temperature-controlled car-seat system utilizing thermoelectric device [J].
Choi, Hyeung-Sik ;
Yun, Sangkook ;
Whang, Kwang-il .
APPLIED THERMAL ENGINEERING, 2007, 27 (17-18) :2841-2849