Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro

被引:32
作者
Govindan, Suresh [1 ]
Sarkey, Jason [1 ]
Ji, Xiang [1 ]
Sundaresan, Nagalingam R. [2 ]
Gupta, Mahesh P. [2 ]
de Tombe, Pieter P. [1 ]
Sadayappan, Sakthivel [1 ]
机构
[1] Loyola Univ Chicago, Stritch Sch Med, Dept Cell & Mol Physiol, Maywood, IL 60153 USA
[2] Univ Chicago, Dept Surg, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
Proteolysis; Pathogenesis; Muscle contractility; Actin; Acetylation; Ca2+; Transients; FAMILIAL HYPERTROPHIC CARDIOMYOPATHY; MYBP-C; REGULATORY DOMAIN; HEART-MUSCLE; F-ACTIN; PHOSPHORYLATION; TROPONIN; CONTRACTILITY; ACTIVATION; BIOMARKER;
D O I
10.1007/s10974-012-9292-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cardiac myosin binding protein-C (cMyBP-C) plays a role in sarcomeric structure and stability, as well as modulating heart muscle contraction. The 150 kDa full-length (FL) cMyBP-C has been shown to undergo proteolytic cleavage during ischemia-reperfusion injury, producing an N-terminal 40 kDa fragment (mass 29 kDa) that is predominantly associated with post-ischemic contractile dysfunction. Thus far, the pathogenic properties of such truncated cMyBP-C proteins have not been elucidated. In the present study, we hypothesized that the presence of these 40 kDa fragments is toxic to cardiomyocytes, compared to the 110 kDa C-terminal fragment and FL cMyBP-C. To test this hypothesis, we infected neonatal rat ventricular cardiomyocytes and adult rabbit ventricular cardiomyocytes with adenoviruses expressing the FL, 110 and 40 kDa fragments of cMyBP-C, and measured cytotoxicity, Ca2+ transients, contractility, and protein-protein interactions. Here we show that expression of 40 kDa fragments in neonatal rat ventricular cardiomyocytes significantly increases LDH release and caspase 3 activity, significantly reduces cell viability, and impairs Ca2+ handling. Adult cardiomyocytes expressing 40 kDa fragments exhibited similar impairment of Ca2+ handling along with a significant reduction of sarcomere length shortening, relaxation velocity, and contraction velocity. Pull-down assays using recombinant proteins showed that the 40 kDa fragment binds significantly to sarcomeric actin, comparable to C0-C2 domains. In addition, we discovered several acetylation sites within the 40 kDa fragment that could potentially affect actomyosin function. Altogether, our data demonstrate that the 40 kDa cleavage fragments of cMyBP-C are toxic to cardiomyocytes and significantly impair contractility and Ca2+ handling via inhibition of actomyosin function. By elucidating the deleterious effects of endogenously expressed cMyBP-C N-terminal fragments on sarcomere function, these data contribute to the understanding of contractile dysfunction following myocardial injury.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 41 条
[1]   Phosphorylation and function of cardiac myosin binding protein-C in health and disease [J].
Barefield, David ;
Sadayappan, Sakthivel .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 48 (05) :866-875
[2]   During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation [J].
Cohen, Shenhav ;
Brault, Jeffrey J. ;
Gygi, Steven P. ;
Glass, David J. ;
Valenzuela, David M. ;
Gartner, Carlos ;
Latres, Esther ;
Goldberg, Alfred L. .
JOURNAL OF CELL BIOLOGY, 2009, 185 (06) :1083-1095
[3]   Functional consequences of caspase activation in cardiac myocytes [J].
Communal, C ;
Sumandea, M ;
de Tombe, P ;
Narula, J ;
Solaro, RJ ;
Hajjar, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6252-6256
[4]   Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle [J].
Copeland, O'Neal ;
Sadayappan, Sakthivel ;
Messer, Andrew E. ;
Steinen, Ger J. M. ;
van der Velden, Jolanda ;
Marston, Steven B. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 49 (06) :1003-1011
[5]   Myosin-binding protein C phosphorylation, myofibril structure, and contractile function during low-flow ischemia [J].
Decker, RS ;
Decker, ML ;
Kulikovskaya, I ;
Nakamura, S ;
Lee, DC ;
Harris, K ;
Klocke, FJ ;
Winegrad, S .
CIRCULATION, 2005, 111 (07) :906-912
[6]   A molecular map of the interactions between titin and myosin-binding protein C - Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy [J].
Freiburg, A ;
Gautel, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 235 (1-2) :317-323
[7]   Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state [J].
Ge, Ying ;
Rybakova, Inna N. ;
Xu, Qingge ;
Moss, Richard L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (31) :12658-12663
[8]  
Gilbert R, 1999, J CELL SCI, V112, P69
[9]   Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction [J].
Govindan, Suresh ;
McElligott, Andrew ;
Muthusamy, Saminathan ;
Nair, Nandini ;
Barefield, David ;
Martin, Jody L. ;
Gongora, Enrique ;
Greis, Kenneth D. ;
Luther, Pradeep K. ;
Winegrad, Saul ;
Henderson, Kyle K. ;
Sadayappan, Sakthivel .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2012, 52 (01) :154-164
[10]   CAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion [J].
Gruen, M ;
Prinz, H ;
Gautel, M .
FEBS LETTERS, 1999, 453 (03) :254-259