Analysis of torus breakdown into chaos in a constraint Duffing van der Pol oscillator

被引:13
作者
Sekikawa, Munehisa [1 ]
Inaba, Naohiko [2 ]
Tsubouchi, Takashi [3 ]
Aihara, Kazuyuki [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, ERATO,JST, Aihara Complex Modeling Project,Meguro Ku, Tokyo 1538505, Japan
[2] Inaba Res Lab, Oyama Shi 3230022, Japan
[3] Univ Tsukuba, Inst Engn Mech & Syst, Tsukuba, Ibaraki 3058573, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2008年 / 18卷 / 04期
关键词
chaos; torus; bifurcation; nonlinear oscillator;
D O I
10.1142/S0218127408020835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bifurcation structure of a constraint Duffing van der Pol oscillator with a diode is analyzed and an objective bifurcation diagram is illustrated in detail in this work. An idealized case, where the diode is assumed to operate as a switch, is considered. In this case, the Poincare map is constructed as a one-dimensional map: a circle map. The parameter boundary between a torus-generating region where the circle map is a diffeomorphism and a chaos-generating region where the circle map has extrema is derived explicitly, without solving the implicit equations, by adopting some novel ideas. On the bifurcation diagram, intermittency and a saddle-node bifurcation from the periodic state to the quasi-periodic state can be exactly distinguished. Laboratory experiment is also carried out and theoretical results are verified.
引用
收藏
页码:1051 / 1068
页数:18
相关论文
共 50 条
  • [21] Global bifurcation and chaos in a van der Pol-Duffing-Mathiue system with a single-well potential oscillator
    Xu, J
    Wang, C
    Chen, YS
    Lu, QS
    ACTA MECHANICA SOLIDA SINICA, 1997, 10 (03) : 262 - 275
  • [22] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [23] Coexistence of attractors in autonomous Van der Pol–Duffing jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form
    Victor Kamdoum Tamba
    Sifeu Takougang Kingni
    Gaetan Fautso Kuiate
    Hilaire Bertrand Fotsin
    Pierre Kisito Talla
    Pramana, 2018, 91
  • [24] Analysis on the symmetric fast-slow behaviors in a van der Pol-Duffing-Jerk oscillator
    Lyu, Weipeng
    Li, Shaolong
    Huang, Juanjuan
    Bi, Qinsheng
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [25] Analysis of Hopf and Takens-Bogdanov bifurcations in a modified van der Pol-Duffing oscillator
    Algaba, A
    Freire, E
    Gamero, E
    Rodriguez-Luis, AJ
    NONLINEAR DYNAMICS, 1998, 16 (04) : 369 - 404
  • [26] Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback
    Li Xin-ye
    Chen Yu-shu
    Wu Zhi-qiang
    Song Tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (12) : 1585 - 1595
  • [27] Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback
    Xin-ye Li
    Yu-shu Chen
    Zhi-qiang Wu
    Tao Song
    Applied Mathematics and Mechanics, 2006, 27 : 1585 - 1595
  • [28] RESPONSE OF PARAMETRICALLY EXCITED DUFFING-VAN DER POL OSCILLATOR WITH DELAYED FEEDBACK
    李欣业
    陈予恕
    吴志强
    宋涛
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (12) : 1585 - 1595
  • [29] Period-doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator
    Yu Jun
    Pan Wei-Zhen
    Zhang Rong-Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 865 - 868
  • [30] Period-Doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator
    YU Jun PAN Wei-Zhen ZHANG Rong-Bo Institute of Nonlinear Science
    Communications in Theoretical Physics, 2009, 51 (05) : 865 - 868