Mathematical justification of macroscopic models for diffusion MRI through the periodic unfolding method

被引:0
|
作者
Coatleven, Julien [1 ]
机构
[1] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France
关键词
diffusion MRI; homogenization; Bloch-Torrey equation; periodic unfolding; imperfect transmission; trace jumps; HOMOGENIZATION; CELLULARITY; EXCHANGE;
D O I
10.3233/ASY-151294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Diffusion Magnetic Resonance Imaging (dMRI) is a promising tool to obtain useful information on cellular structure when applied to biological tissues. A coupled macroscopic model has been introduced recently through formal homogenization to model dMRI's signal attenuation. This model was based on a particular scaling of the permeability condition modeling cellular membranes. In this article, we explore all the possible scalings and mathematically justify the corresponding limit models, using the periodic unfolding method. We also illustrate through numerical simulations the respective behavior of the limit models when compared to dMRI measurements.
引用
收藏
页码:219 / 258
页数:40
相关论文
共 4 条
  • [1] The periodic unfolding method for perforated domains and Neumann sieve models
    Cioranescu, D.
    Damlamian, A.
    Griso, G.
    Onofrei, D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03): : 248 - 277
  • [2] Parameter estimation using macroscopic diffusion MRI signal models
    Hang Tuan Nguyen
    Grebenkov, Denis
    Dang Van Nguyen
    Poupon, Cyril
    Le Bihan, Denis
    Li, Jing-Rebecca
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (08) : 3389 - 3413
  • [3] Microstructure models for composites with imperfect interface via the periodic unfolding method
    Ene, Horia
    Timofte, Claudia
    ASYMPTOTIC ANALYSIS, 2014, 89 (1-2) : 111 - 122
  • [4] A.convergence result for the periodic unfolding method related to fast diffusion on manifolds
    Graf, Isabell
    Peter, Malte A.
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (06) : 485 - 490