Componentwise support vector machines for structure detection

被引:0
作者
Pelckmans, K [1 ]
Suykens, JAK [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, ESAT, SCD, SISTA, B-3001 Louvain, Belgium
来源
ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS | 2005年 / 3697卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper extends recent advances in Support Vector Machines and kernel machines in estimating additive models for classification from observed multivariate input/output data. Specifically, we address the question how to obtain predictive models which gives insight into the structure of the dataset. This contribution extends the framework of structure detection as introduced in recent publications by the authors towards estimation of component-wise Support Vector Machines (cSVMs). The result is applied to a benchmark classification task where the input variables all take binary values.
引用
收藏
页码:643 / 648
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2002, Least Squares Support Vector Machines
[2]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[3]   Regularization of wavelet approximations - Rejoinder [J].
Antoniadis, A ;
Fan, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :964-967
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION
[5]  
Cristanini N., 2000, INTRO SUPPORT VECTOR
[6]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[7]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[8]   Structural modelling with sparse kernels [J].
Gunn, SR ;
Kandola, JS .
MACHINE LEARNING, 2002, 48 (1-3) :137-163
[9]  
Hastie T., 1990, Generalized additive model
[10]  
PELCKMANS K, 2005, IN PRESS NEUROCOMPUT