Weakness and Mittag-Leffler Stability of Solutions for Time-Fractional Keller-Segel Models

被引:16
作者
Zhou, Y. [2 ,3 ]
Manimaran, J. [4 ]
Shangerganesh, L. [4 ]
Debbouche, A. [1 ]
机构
[1] Guelma Univ, Dept Math, Guelma 24000, Algeria
[2] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Natl Inst Technol, Dept Humanities & Sci, Ponda 403401, Goa, India
基金
中国国家自然科学基金;
关键词
fractional PDE; weak solution; Keller-Segel model; Faedo-Galerkin method; Mittag-Leffler stability; ORDER EPIDEMIC MODEL; STEADY-STATES; DIFFUSION; EXISTENCE; SYSTEM;
D O I
10.1515/ijnsns-2018-0035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a time-fractional Keller-Segel model with Dirichlet conditions on the boundary and Caputo fractional derivative for the time. The main result shows the existence theorem of the proposed model using the Faedo-Galerkin method with some compactness arguments. Moreover, we prove the Mittag-Leffler stability of solutions of the considered model.
引用
收藏
页码:753 / 761
页数:9
相关论文
共 38 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   On a time fractional reaction diffusion equation [J].
Ahmad, B. ;
Alhothuali, M. S. ;
Alsulami, H. H. ;
Kirane, M. ;
Timoshin, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :199-204
[3]  
Ahmed E., 2012, Journal of Fractional Calculus and Applied Analysis, V3, P1
[4]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[5]   Global existence and asymptotic behavior for a time fractional reaction-diffusion system [J].
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Lassoued, Rafika .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :951-958
[6]   The solution of fractional order epidemic model by implicit Adams methods [J].
Ameen, I. ;
Novati, P. .
APPLIED MATHEMATICAL MODELLING, 2017, 43 :78-84
[7]  
[Anonymous], 2006, THEORY APPL FRACTION
[8]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[9]  
[Anonymous], 2016, FRACT CALC APPL
[10]   Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order [J].
Arenas, Abraham J. ;
Gonzalez-Parra, Gilberto ;
Chen-Charpentier, Benito M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 121 :48-63