Symmetric form of the Hudson-Parthasarathy stochastic equation

被引:5
作者
Chebotarev, AM [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,MOSCOW 117234,RUSSIA
关键词
quantum stochastic evolution; unitary cocycle; strong resolvent limit; creation and annihilation processes; adapted and nonadapted stochastic equations;
D O I
10.1007/BF02309169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Hudson-Parthasarathy equation corresponds, up to unitary equivalence, to the strong resolvent limit of Schrodinger Hamiltonians in Fock space and that the symmetric form of this equation corresponds to the weak limit of the Schrodinger Hamiltonians.
引用
收藏
页码:544 / 561
页数:18
相关论文
共 25 条
[1]  
ABERG C, 1994, 9428 I THEOR PHYS
[2]  
Accardi L., 1982, Publ. Rest. Inst. Math. Sct., V18, P97
[3]  
[Anonymous], SINGULAR BILINEAR FO
[4]   A QUANTUM NONADAPTED ITO FORMULA AND STOCHASTIC-ANALYSIS IN FOCK SCALE [J].
BELAVKIN, VP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) :414-447
[5]   SUFFICIENT CONDITIONS FOR CONSERVATIVITY OF QUANTUM DYNAMICAL SEMIGROUPS [J].
CHEBOTAREV, AM ;
FAGNOLA, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 118 (01) :131-153
[6]  
CHEBOTAREV AM, 1992, PITMAN RES NOTES MAT, P86
[7]  
CHEBOTAREV AM, 1992, QUANTUM PROBABILITY
[8]  
CHEBOTAREV AM, 1992, MAT ZAMETKI, V52, P112
[9]  
Davies E. B., 1976, Quantum theory of open systems
[10]  
Feller W., 1966, INTRO PROBABILITY TH, VII