Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome

被引:12
作者
Bazaz, Mahere Rezazade [1 ,2 ]
Seno, Mohammad M. Ghahramani [1 ,3 ]
Dehghani, Hesam [1 ,2 ,3 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Vet Med, Div Biotechnol, Mashhad 9177948974, Razavi Khorasan, Iran
[2] Ferdowsi Univ Mashhad, Res Inst Biotechnol, Stem Cell Biol & Regenerat Med Res Grp, Azadi Sq, Mashhad 9177948974, Razavi Khorasan, Iran
[3] Ferdowsi Univ Mashhad, Fac Vet Med, Dept Basic Sci, Mashhad 9177948974, Razavi Khorasan, Iran
关键词
SLEEPING-BEAUTY; PIGGYBAC TRANSPOSASES; SYSTEM; LOCUS; MOS1;
D O I
10.1038/s41598-022-07158-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various methods have been used in targeted gene knock-in applications. CRISPR-based knock-in strategies based on homology-independent repair pathways such as CRISPR HITI have been shown to possess the best efficiency for gene knock-in in mammalian cells. However, these methods suffer from the probability of plasmid backbone insertion at the target site. On the other hand, studies trying to combine the targeting ability of the Cas9 molecule and the excision/integration capacity of the PB transposase have shown random integrations. In this study, we introduce a new homology-independent knock-in strategy, Transposase-CRISPR mediated Targeted Integration (TransCRISTI), that exploits a fusion of Cas9 nuclease and a double mutant piggyBac transposase. In isogenic mammalian cell lines, we show that the TransCRISTI method demonstrates higher efficiency (72%) for site-specific insertions than the CRISPR HITI (44%) strategy. Application of the TransCRISTI method resulted in site-directed integration in 4.13% and 3.69% of the initially transfected population in the human AAVS1and PML loci, respectively, while the CRISPR HITI strategy resulted in site-directed integration in the PML locus in only 0.6% of cells. We also observed lower off-target and random insertions in the TransCRISTI group than the CRISPR HITI group. The TransCRISTI technology represents a great potential for the accurate and high-efficiency knock-in of the desired transposable elements into the predetermined genomic locations.
引用
收藏
页数:18
相关论文
共 35 条
[1]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[2]   Structural basis of seamless excision and specific targeting by piggyBac transposase [J].
Chen, Qiujia ;
Luo, Wentian ;
Veach, Ruth Ann ;
Hickman, Alison B. ;
Wilson, Matthew H. ;
Dyda, Fred .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Promyelocytic Leukemia (PML) gene regulation: implication towards curbing oncogenesis [J].
Datta, Neerajana ;
Islam, Saimul ;
Chatterjee, Uttara ;
Chatterjee, Sandip ;
Panda, Chinmay K. ;
Ghosh, Mrinal K. .
CELL DEATH & DISEASE, 2019, 10 (9)
[4]   Column-Free Purification Methods for Recombinant Proteins Using Self-Cleaving Aggregating Tags [J].
Fan, Yamin ;
Miozzi, Jackelyn M. ;
Stimple, Samuel D. ;
Han, Tzu-Chiang ;
Wood, David W. .
POLYMERS, 2018, 10 (05)
[5]   In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining [J].
Geisinger, Jonathan M. ;
Turan, Soren ;
Hernandez, Sophia ;
Spector, Laura P. ;
Calos, Michele P. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (08)
[6]   CRISPR/dCas9-mediated transposition with specificity and efficiency of site-directed genomic insertions [J].
Goshayeshi, Lena ;
Taemeh, Sara Yousefi ;
Dehdilani, Nima ;
Nasiri, Mohammadreza ;
Seno, Mohammad M. Ghahramani ;
Dehghani, Hesam .
FASEB JOURNAL, 2021, 35 (02)
[7]   RNA-guided piggyBac transposition in human cells [J].
Hew, Brian E. ;
Sato, Ryuei ;
Mauro, Damiano ;
Stoytchev, Ilko ;
Owens, Jesse B. .
SYNTHETIC BIOLOGY, 2019, 4 (01)
[8]   Development and Applications of CRISPR-Cas9 for Genome Engineering [J].
Hsu, Patrick D. ;
Lander, Eric S. ;
Zhang, Feng .
CELL, 2014, 157 (06) :1262-1278
[9]   Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side [J].
Hudecek, Michael ;
Izsvak, Zsuzsanna ;
Johnen, Sandra ;
Renner, Matthias ;
Thumann, Gabriele ;
Ivics, Zoltan .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2017, 52 (04) :355-380
[10]   Targeted Sleeping Beauty transposition in human cells [J].
Ivics, Zoltan ;
Katzer, Andrea ;
Stuewe, Eva E. ;
Fiedler, Dora ;
Knespel, Siegne ;
Izsvak, Zsuzsanna .
MOLECULAR THERAPY, 2007, 15 (06) :1137-1144