A STRONGLY CONVERGENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION IN HILBERT SPACES

被引:19
|
作者
Bello Cruz, J. Y. [1 ]
Iusem, A. N. [2 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
[2] Jardim Bot, Inst Matemat Pura & Aplicada, Rio De Janeiro, Brazil
关键词
Convex minimization; Nonsmooth optimization; Projected subgradient algorithm; Projection method; Strong convergence; MESH-INDEPENDENCE PRINCIPLE; IMAGE-RECONSTRUCTION; OPTIMIZATION;
D O I
10.1080/01630563.2011.590914
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose a strongly convergent variant on the projected subgradient method for constrained convex minimization problems in Hilbert spaces. The advantage of the proposed method is that it converges strongly when the problem has solutions, without additional assumptions. The method also has the following desirable property: the sequence converges to the solution of the problem which lies closest to the initial iterate.
引用
收藏
页码:1009 / 1018
页数:10
相关论文
共 50 条
  • [41] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [42] Strongly Convergent Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Akashi, Shigeo
    Kimura, Yasunori
    Takahashi, Wataru
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 917 - 938
  • [43] A strongly convergent hybrid proximal method in Banach spaces
    Otero, RG
    Svaiter, BF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 700 - 711
  • [44] VERY STRONGLY AND VERY WEAKLY CONVERGENT SEQUENCES IN LOCALLY CONVEX-SPACES
    SIMOES, MA
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 84 (02) : 125 - 132
  • [45] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Mordukhovich, Boris S.
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 899 - 936
  • [46] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    Mathematical Programming, 2023, 198 : 899 - 936
  • [47] On convergence of inexact projection gradient method for strongly convex minimization
    Necoara, Ion
    Patrascu, Andrei
    Clipici, Dragos
    Barbu, Marian
    2017 21ST INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2017, : 506 - 511
  • [48] DESCENT METHODS FOR NONSMOOTH CONVEX CONSTRAINED MINIMIZATION
    KIWIEL, KC
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 255 : 203 - 214
  • [49] Excessive gap technique in nonsmooth convex minimization
    Nesterov, Y
    SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) : 235 - 249
  • [50] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    Yutong Dai
    Yang Weng
    Journal of Systems Science and Complexity, 2020, 33 : 345 - 365