Origin of the high Seebeck coefficient of the misfit [Ca2CoO3]0.62[CoO2] cobaltate from site-specific valency and spin-state determinations

被引:8
作者
Ahad, Abdul [1 ]
Gautam, K. [2 ,5 ]
Majid, S. S. [1 ]
Francoual, S. [3 ]
Rahman, F. [1 ]
De Groot, Frank M. F. [4 ]
Shukla, D. K. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India
[2] UGC DAE Consortium Sci Res, Indore 452001, Madhya Pradesh, India
[3] DESY, Notkestr 85, D-22607 Hamburg, Germany
[4] Univ Utrecht, Debl & Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands
[5] Acad Sinica, Inst Phys, Opt Phys Lab, Taipei, Taiwan
关键词
THERMOPOWER; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.101.220202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Layered misfit cobaltate [Ca2CoO3](0.62)[CoO2], which emerged as an important thermoelectric material [A. C. Masset et al. Phys. Rev. B 62, 166 (2000)], has been explored extensively in the last decade for the exact mechanism behind its high Seebeck coefficient. Its complex crystal and electronic structures have inhibited consensus among such investigations. This situation has arisen mainly due to difficulties in accurate identification of the chemical state, spin state, and site symmetries in its two subsystems (rocksalt [Ca2CoO3] and triangular [CoO2]). By employing resonant photoemission spectroscopy and x-ray absorption spectroscopy along with charge transfer multiplet simulations (at the Co ions), we have successfully identified the site symmetries, valencies, and spin states of the Co in both layers. Our site-symmetry observations explain the experimental value of the high Seebeck coefficient and also confirm that the carriers hop within the rocksalt layer, which is in contrast to earlier reports where hopping within triangular CoO2 layer has been held responsible for the large Seebeck coefficient.
引用
收藏
页数:5
相关论文
共 31 条
  • [1] Colossal thermopower, spin states and delocalization effects in single layered La2-xSrxCoO4
    Ahad, Abdul
    Shukla, D. K.
    Rahman, F.
    Majid, S.
    Tarachand
    Okram, G. S.
    Sinha, A. K.
    Phase, D. M.
    [J]. ACTA MATERIALIA, 2017, 135 : 233 - 243
  • [2] Asahi R, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.155103
  • [3] THERMOPOWER IN CORRELATED HOPPING REGIME
    CHAIKIN, PM
    BENI, G
    [J]. PHYSICAL REVIEW B, 1976, 13 (02): : 647 - 651
  • [4] PHOTOEMISSION FROM TRANSITION-METALS AND THEIR COMPOUNDS
    DAVIS, LC
    [J]. JOURNAL OF APPLIED PHYSICS, 1986, 59 (06) : R25 - R63
  • [5] de Groot F. M. F., 2008, CORE LEVEL SPECTROSC
  • [6] Grebille D, 2004, J APPL CRYSTALLOGR, V37, P823, DOI [10.1107/S0021889804018096, 10.1107/S0021889804011446]
  • [7] Haverkort M. W., ARXIVCONDMAT0505214
  • [8] Electronic structure of single-crystalline thermoelectric Bi2-xPbxSr2Co2Oy (x=0,0.6) from photoemission and x-ray absorption
    Kang, J. -S.
    Han, S. W.
    Fujii, T.
    Terasaki, I.
    Lee, S. S.
    Kim, G.
    Olson, C. G.
    Lee, H. G.
    Kim, J. -Y.
    Min, B. I.
    [J]. PHYSICAL REVIEW B, 2006, 74 (20)
  • [9] Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials
    Kang, Min-Gyu
    Cho, Kwang-Hwan
    Kim, Jin-Sang
    Nahm, Sahn
    Yoon, Seok-Jin
    Kang, Chong-Yun
    [J]. ACTA MATERIALIA, 2014, 73 : 251 - 258
  • [10] Observations of Co4+ in a Higher Spin State and the Increase in the Seebeck Coefficient of Thermoelectric Ca3Co4O9
    Klie, R. F.
    Qiao, Q.
    Paulauskas, T.
    Gulec, A.
    Rebola, A.
    Oeguet, S.
    Prange, M. P.
    Idrobo, J. C.
    Pantelides, S. T.
    Kolesnik, S.
    Dabrowski, B.
    Ozdemir, M.
    Boyraz, C.
    Mazumdar, D.
    Gupta, A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (19)