We develop a topological vertex formalism for computing the Donaldson Thomas invariants of Calabi-Yau orbifolds. The basic combinatorial object is the orbifold vertex V(lambda mu nu)(G), a generating function for the number of 3D partitions asymptotic to 2D partitions lambda, mu, nu and colored by representations of a finite Abelian group G acting on C(3). In the case where G congruent to Z(n) acting on C(3) with transverse A(n-1) quotient singularities, we give an explicit formula for V(lambda mu nu)(G) in terms of Schur functions. We discuss applications of our formalism to the Donaldson Thomas crepant resolution conjecture and to the orbifold Donaldson-Thomas/Gromov-Witten correspondence. We also explicitly compute the Donaldson Thomas partition function for some simple orbifold geometries: the local football P(a,b)(I) and the local BZ(2) gerbe. (C) 2011 Elsevier Inc. All rights reserved.
机构:
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R ChinaSichuan Univ, Dept Math, Chengdu 610064, Peoples R China
Chen, Bo Hui
Du, Cheng Yong
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, VC & VR Key Lab, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, Laurent Math Ctr, Chengdu 610068, Peoples R ChinaSichuan Univ, Dept Math, Chengdu 610064, Peoples R China
Du, Cheng Yong
Wang, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USASichuan Univ, Dept Math, Chengdu 610064, Peoples R China