The orbifold topological vertex

被引:41
|
作者
Bryan, Jim [1 ]
Cadman, Charles [1 ]
Young, Ben [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Donaldson-Thomas; Orbifold; Calabi-Yau; DELIGNE-MUMFORD STACKS; DONALDSON-THOMAS INVARIANTS; MCKAY CORRESPONDENCE; RIEMANN-ROCH; CALABI-YAU; GEOMETRY;
D O I
10.1016/j.aim.2011.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a topological vertex formalism for computing the Donaldson Thomas invariants of Calabi-Yau orbifolds. The basic combinatorial object is the orbifold vertex V(lambda mu nu)(G), a generating function for the number of 3D partitions asymptotic to 2D partitions lambda, mu, nu and colored by representations of a finite Abelian group G acting on C(3). In the case where G congruent to Z(n) acting on C(3) with transverse A(n-1) quotient singularities, we give an explicit formula for V(lambda mu nu)(G) in terms of Schur functions. We discuss applications of our formalism to the Donaldson Thomas crepant resolution conjecture and to the orbifold Donaldson-Thomas/Gromov-Witten correspondence. We also explicitly compute the Donaldson Thomas partition function for some simple orbifold geometries: the local football P(a,b)(I) and the local BZ(2) gerbe. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:531 / 595
页数:65
相关论文
共 50 条
  • [1] The orbifold DT/PT vertex correspondence
    Lin, Yijie
    ADVANCES IN MATHEMATICS, 2025, 469
  • [2] Torus Knots and the Topological Vertex
    Jockers, Hans
    Klemm, Albrecht
    Soroush, Masoud
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (08) : 953 - 989
  • [3] A mathematical theory of the topological vertex
    Li, Jun
    Liu, Chiu-Chu Melissa
    Liu, Kefeng
    Zhou, Jian
    GEOMETRY & TOPOLOGY, 2009, 13 : 527 - 621
  • [4] Flop invariance of the topological vertex
    Minabe, Satoshi
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 269 - 279
  • [5] More on topological vertex formalism for 5-brane webs with O5-plane
    Hayashi, Hirotaka
    Zhu, Rui-Dong
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [6] Four-Dimensional Projective Orbifold Hypersurfaces
    Brown, Gavin
    Kasprzyk, Alexander
    EXPERIMENTAL MATHEMATICS, 2016, 25 (02) : 176 - 193
  • [7] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    ANNALES HENRI POINCARE, 2013, 14 (04): : 1001 - 1041
  • [8] Moduli of twisted orbifold sheaves
    Lieblich, Max
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4145 - 4182
  • [9] LOGARITHMIC TRACE AND ORBIFOLD PRODUCTS
    Edidin, Dan
    Jarvis, Tyler J.
    Kimura, Takashi
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (03) : 427 - 473
  • [10] ON ORBIFOLD EMBEDDINGS
    Cho, Cheol-Hyun
    Hong, Hansol
    Shin, Hyung-Seok
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 1369 - 1400